[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327449
Number of ways the first n primes can be partitioned into three sets with equal sums.
5
0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 423, 0, 2624, 0, 13474, 0, 0, 0, 611736, 0, 4169165, 0, 30926812, 0, 214975174, 0, 1590432628, 0, 11431365932, 0, 83946004461, 0, 0, 0, 4615654888831, 0, 35144700468737, 0, 271133285220726, 0, 2103716957561013, 0, 0, 0, 0, 0, 990170108748552983, 0, 7855344215856348141
OFFSET
1,10
COMMENTS
It is not true that a(2k+1) is always 0.
REFERENCES
Keith F. Lynch, Posting to Math Fun Mailing List, Sep 17 2019.
LINKS
FORMULA
a(n) > 0 <=> n in { A103208 }, with odd n in { A111320 }. - Alois P. Heinz, Sep 19 2019
EXAMPLE
One of the three solutions for n = 10: 3 + 17 + 23 = 2 + 5 + 7 + 29 = 11 + 13 + 19.
MAPLE
s:= proc(n) option remember; `if`(n<2, 0, ithprime(n)+s(n-1)) end:
b:= proc(n, x, y) option remember; `if`(n=1, 1, (p-> (l->
add(`if`(p>l[i], 0, b(n-1, sort(subsop(i=l[i]-p, l))
[1..2][])), i=1..3))([x, y, s(n)-x-y]))(ithprime(n)))
end:
a:= n-> `if`(irem(2+s(n), 3, 'q')=0, b(n, q-2, q)/2, 0):
seq(a(n), n=1..40); # Alois P. Heinz, Sep 19 2019
MATHEMATICA
s[n_] := s[n] = If[n < 2, 0, Prime[n] + s[n - 1]];
b[n_, x_, y_] := b[n, x, y] = If[n == 1, 1, Function[p, Function[l, Sum[If[ p > l[[i]], 0, b[n - 1, Sequence @@ Sort[ReplacePart[l, i -> l[[i]] - p]][[1;; 2]]]], {i, 1, 3}]][{x, y, s[n] - x - y}]][Prime[n]]];
a[n_] := If[Mod[2+s[n], 3]==0, q = Quotient[2+s[n], 3]; b[n, q-2, q]/2, 0];
Array[a, 40] (* Jean-François Alcover, Apr 09 2020, after Alois P. Heinz *)
PROG
(PARI)
EqSumThreeParts(v)={ my(n=#v, vs=vector(n), m=vecsum(v)/3, brk=0);
for(i=1, n-1, vs[i+1]=vs[i]+v[i]; if(vs[i]<=min(1000, m), brk=i));
my(q=Vecrev(prod(i=1, brk, 1+x^v[i]+y^v[i])));
my(recurse(k, s, p)=if(k==brk, if(s<#q, polcoef(p*q[s+1], m, y)), if(s<=vs[k], self()(k-1, s, p*(1 + y^v[k]))) + if(s>=v[k], self()(k-1, s-v[k], p)) ));
if(frac(m), 0, recurse(n-1, m, 1 + O(y*y^m))/2);
}
a(n)={EqSumThreeParts(primes(n))} \\ Andrew Howroyd, Sep 19 2019
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Sep 19 2019
EXTENSIONS
Corrected and a(30)-a(52) added by Andrew Howroyd, Sep 19 2019
a(53) and beyond from Alois P. Heinz, Sep 19 2019
STATUS
approved