[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A113263
a(n) is the number of ways the set {1^3, 2^3, ..., n^3} can be partitioned into two sets of equal sums.
9
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 1, 0, 0, 2, 62, 0, 0, 268, 356, 0, 0, 2287, 1130, 0, 0, 5317, 36879, 0, 0, 203016, 319415, 0, 0, 2124580, 1631750, 0, 0, 10953868, 41280525, 0, 0, 242899218, 472958485, 0, 0, 2984270739, 3419746788, 0, 0
OFFSET
1,15
COMMENTS
a(n)=0 when n == 1 or 2 mod 4.
LINKS
Alois P. Heinz and Ray Chandler, Table of n, a(n) for n = 1..130 (first 100 terms from Alois P. Heinz)
FORMULA
a(n) is half the coefficient of x^0 in product(x^(k^3)+x^(k^-3), k=1..n).
a(n) = [x^(n^3)] Product_{k=1..n-1} (x^(k^3) + 1/x^(k^3)). - Ilya Gutkovskiy, Feb 01 2024
MAPLE
A113263:=proc(n) local i, p, t; t:= NULL; p:=1; for i to n do p:=p*(x^(i^3)+x^(-i^3)); t:=t, coeff(p, x, 0)/2; od; t; end;
MATHEMATICA
p = 1; t = {}; Do[p = Expand[p(x^(n^3) + x^(-n^3))]; AppendTo[t, Select[ p, NumberQ[ # ] &]/2], {n, 56}]; t (* Robert G. Wilson v *)
CROSSREFS
Sequence in context: A059431 A289358 A271698 * A063658 A237053 A364022
KEYWORD
nonn
AUTHOR
Floor van Lamoen, Oct 21 2005
EXTENSIONS
More terms from Robert G. Wilson v and Tony Noe, Oct 27 2005
STATUS
approved