[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326793
The number of small Schröder paths such that the area between the path and the x-axis contains n up-triangles.
2
1, 1, 2, 5, 12, 30, 75, 188, 472, 1186, 2981, 7494, 18842, 47376, 119126, 299545, 753220, 1894018, 4762640, 11976010, 30114592, 75725485, 190417684, 478820320, 1204031670, 3027633300, 7613224740, 19144059492, 48139261637, 121050006438
OFFSET
0,3
COMMENTS
We define two types of plane triangles - up-triangles with vertices at the integer lattice points (x, y), (x+1, y+1) and (x+2, y) and down-triangles with vertices at the integer lattice points (x, y), (x-1, y+1) and (x+1, y+1). The area beneath a small Schröder path may be decomposed in a unique manner into a collection of up- and down-triangles. This decomposition produces a triangle stack in the sense of A224704. Here we are counting triangle stacks containing n up-triangles. See the Links section for an illustration.
FORMULA
O.g.f. as a continued fraction: (u marks up-triangles)
A(u) = 1/(1 - u/(1 - u - u^2/(1 - u^2 - u^3/(1 - u^3 - u^4/(1 - u^4 - (...) ))))) = 1 + u + 2*u^2 + 5*u^3 + 12*u^4 + ....
A(u) = 1/(1 - u/(1 - (u + u^2)/(1 - u^3/(1 - (u^2 + u^4)/(1 - u^5/(1 - (u^3 + u^6)/(1 - u^7/( (...) )))))))).
A(u) = 1/(2 - (1 + u)/(2 - (1 + u^2)/(2 - (1 + u^3)/(2 - (...) )))).
A(u) = N(u)/D(u), where N(u) = Sum_{n >= 0} u^(n^2+n)/ Product_{k = 1..n} ((1 - u^k)^2) and D(u) = Sum_{n >= 0} u^(n^2)/ Product_{k = 1..n} ((1 - u^k)^2).
a(n) ~ c*d^n, where c = 0.29475 98606 22204 98206 41002 ..., d = 2.51457 96438 78729 18851 04371 ....
Row sums of A326792.
CROSSREFS
Sequence in context: A000106 A076883 A140832 * A026580 A092247 A331233
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Jul 25 2019
STATUS
approved