[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A331233
Number of unlabeled rooted trees with n vertices and more than two branches of the root.
4
0, 0, 0, 1, 2, 5, 12, 30, 75, 194, 501, 1317, 3485, 9302, 24976, 67500, 183290, 500094, 1369939, 3766831, 10391722, 28756022, 79794407, 221987348, 619019808, 1729924110, 4844242273, 13590663071, 38195831829, 107523305566, 303148601795, 855922155734, 2419923253795
OFFSET
1,5
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..1000 (first 500 terms from Andrew Howroyd)
FORMULA
For n > 1, a(n) = Sum_{k > 2} A033185(n - 1, k).
G.f.: f(x) - x*(1 + f(x) + (f(x)^2 + f(x^2))/2) where f(x) is the g.f. of A000081. - Andrew Howroyd, Jan 22 2020
EXAMPLE
The a(4) = 1 through a(7) = 12 rooted trees:
(ooo) (oooo) (ooooo) (oooooo)
(oo(o)) (oo(oo)) (oo(ooo))
(ooo(o)) (ooo(oo))
(o(o)(o)) (oooo(o))
(oo((o))) (o(o)(oo))
(oo((oo)))
(oo(o)(o))
(oo(o(o)))
(ooo((o)))
((o)(o)(o))
(o(o)((o)))
(oo(((o))))
MAPLE
g:= proc(n, i, t) option remember; `if`(n=0, `if`(t=0, 1, 0),
`if`(i<1, 0, add(binomial(g(i-1$2, 0)+j-1, j)*
g(n-i*j, i-1, max(0, t-j)), j=0..n/i)))
end:
a:= n-> g(n-1$2, 3):
seq(a(n), n=1..40); # Alois P. Heinz, Jan 22 2020
MATHEMATICA
urt[n_]:=Join@@Table[Union[Sort/@Tuples[urt/@ptn]], {ptn, IntegerPartitions[n-1]}];
Table[Length[Select[urt[n], Length[#]>2&]], {n, 10}]
(* Second program: *)
g[n_, i_, t_] := g[n, i, t] = If[n == 0, If[t == 0, 1, 0],
If[i < 1, 0, Sum[Binomial[g[i - 1, i - 1, 0] + j - 1, j]*
g[n - i*j, i - 1, Max[0, t - j]], {j, 0, n/i}]]];
a[n_] := g[n-1, n-1, 3];
Array[a, 40] (* Jean-François Alcover, May 20 2021, after Alois P. Heinz *)
PROG
(PARI) \\ TreeGf gives gf of A000081.
TreeGf(N)={my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)}
seq(n)={my(g=TreeGf(n)); Vec(g - x*(1 + g + (g^2 + subst(g, x, x^2))/2), -n)} \\ Andrew Howroyd, Jan 22 2020
CROSSREFS
The Matula-Goebel numbers of these trees are given by A033942.
The series-reduced case is A331488.
The lone-child-avoiding case is (also) A331488.
The labeled version is A331577.
Unlabeled rooted trees are counted by A000081.
Sequence in context: A326793 A026580 A092247 * A108360 A051163 A051450
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 21 2020
STATUS
approved