[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326482
a(n) = E2_{n}(-1) with E2_{n} the polynomials defined in A326480.
5
1, -4, 14, -40, 80, -64, -16, -1600, 8960, 29696, -349696, -1423360, 22384640, 89440256, -1903691776, -7615160320, 209865605120, 839460847616, -29088884064256, -116355542548480, 4951498057318400, 19805992204107776, -1015423886490075136
OFFSET
0,2
COMMENTS
For comments see A326480.
MAPLE
# The function E2(n) is defined in A326480.
seq(subs(x=-1, E2(n)), n=0..22);
MATHEMATICA
T[n_, k_] := 2^n n! SeriesCoefficient[4 Exp[x z]/(Exp[z] + 1)^2, {z, 0, n}, {x, 0, k}]; Table[Sum[(-1)^k T[n, k], {k, 0, n}], {n, 0, 22}] (* Jean-François Alcover, Jul 23 2019 *)
CROSSREFS
KEYWORD
sign
AUTHOR
Peter Luschny, Jul 12 2019
STATUS
approved