[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326479
T(n, k) = 2^n * n! * [x^k] [z^n] (exp(z) + 1)^2/(4*exp(x*z)), triangle read by rows, for 0 <= k <= n.
0
1, 2, -2, 6, -8, 4, 20, -36, 24, -8, 72, -160, 144, -64, 16, 272, -720, 800, -480, 160, -32, 1056, -3264, 4320, -3200, 1440, -384, 64, 4160, -14784, 22848, -20160, 11200, -4032, 896, -128, 16512, -66560, 118272, -121856, 80640, -35840, 10752, -2048, 256
OFFSET
0,2
FORMULA
Generated by 1/A326480(z), where A326480(z) denotes the generating function of A326480 which generates the Euler polynomials of order 2.
EXAMPLE
[0] [ 1]
[1] [ 2, -2]
[2] [ 6, -8, 4]
[3] [ 20, -36, 24, -8]
[4] [ 72, -160, 144, -64, 16]
[5] [ 272, -720, 800, -480, 160, -32]
[6] [ 1056, -3264, 4320, -3200, 1440, -384, 64]
[7] [ 4160, -14784, 22848, -20160, 11200, -4032, 896, -128]
[8] [16512, -66560, 118272, -121856, 80640, -35840, 10752, -2048, 256]
[9] [65792, -297216, 599040, -709632, 548352, -290304, 107520, -27648, 4608, -512]
MAPLE
IE2 := proc(n) (exp(z) + 1)^2/(4*exp(x*z));
series(%, z, 48); 2^n*n!*coeff(%, z, n) end:
for n from 0 to 9 do PolynomialTools:-CoefficientList(IE2(n), x) od;
MATHEMATICA
T[n_, k_] := 2^n n! SeriesCoefficient[(E^z + 1)^2/(4 E^(x z)), {x, 0, k}, {z, 0, n}]; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 21 2019 *)
CROSSREFS
Sequence in context: A101343 A284748 A134457 * A306688 A092522 A116542
KEYWORD
sign,tabl
AUTHOR
Peter Luschny, Jul 12 2019
STATUS
approved