# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a326479 Showing 1-1 of 1 %I A326479 #10 Jul 21 2019 08:56:40 %S A326479 1,2,-2,6,-8,4,20,-36,24,-8,72,-160,144,-64,16,272,-720,800,-480,160, %T A326479 -32,1056,-3264,4320,-3200,1440,-384,64,4160,-14784,22848,-20160, %U A326479 11200,-4032,896,-128,16512,-66560,118272,-121856,80640,-35840,10752,-2048,256 %N A326479 T(n, k) = 2^n * n! * [x^k] [z^n] (exp(z) + 1)^2/(4*exp(x*z)), triangle read by rows, for 0 <= k <= n. %F A326479 Generated by 1/A326480(z), where A326480(z) denotes the generating function of A326480 which generates the Euler polynomials of order 2. %e A326479 [0] [ 1] %e A326479 [1] [ 2, -2] %e A326479 [2] [ 6, -8, 4] %e A326479 [3] [ 20, -36, 24, -8] %e A326479 [4] [ 72, -160, 144, -64, 16] %e A326479 [5] [ 272, -720, 800, -480, 160, -32] %e A326479 [6] [ 1056, -3264, 4320, -3200, 1440, -384, 64] %e A326479 [7] [ 4160, -14784, 22848, -20160, 11200, -4032, 896, -128] %e A326479 [8] [16512, -66560, 118272, -121856, 80640, -35840, 10752, -2048, 256] %e A326479 [9] [65792, -297216, 599040, -709632, 548352, -290304, 107520, -27648, 4608, -512] %p A326479 IE2 := proc(n) (exp(z) + 1)^2/(4*exp(x*z)); %p A326479 series(%, z, 48); 2^n*n!*coeff(%, z, n) end: %p A326479 for n from 0 to 9 do PolynomialTools:-CoefficientList(IE2(n), x) od; %t A326479 T[n_, k_] := 2^n n! SeriesCoefficient[(E^z + 1)^2/(4 E^(x z)), {x, 0, k}, {z, 0, n}]; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Jul 21 2019 *) %Y A326479 Cf. A326480, A063376. %K A326479 sign,tabl %O A326479 0,2 %A A326479 _Peter Luschny_, Jul 12 2019 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE