[go: up one dir, main page]

login
A309724
Digits of the 8-adic integer (1/7)^(1/7).
3
7, 0, 5, 4, 4, 7, 7, 4, 1, 6, 1, 3, 3, 0, 3, 4, 5, 0, 5, 4, 2, 7, 5, 3, 1, 4, 7, 6, 0, 6, 1, 2, 4, 6, 2, 2, 1, 6, 2, 0, 2, 5, 1, 6, 3, 4, 0, 6, 1, 2, 4, 0, 5, 6, 5, 5, 0, 4, 6, 7, 5, 4, 0, 0, 1, 6, 3, 6, 7, 6, 1, 2, 7, 2, 3, 3, 7, 1, 5, 5, 4, 6, 3, 4, 6, 1, 3, 3, 3, 2, 6, 1, 4, 3, 0, 0, 1, 4, 4, 5, 4
OFFSET
0,1
LINKS
Wikipedia, Hensel's Lemma.
FORMULA
Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 7, b(n) = b(n-1) + 7 * (7 * b(n-1)^7 - 1) mod 8^n for n > 1, then a(n) = (b(n+1) - b(n))/8^n.
PROG
(PARI) N=100; Vecrev(digits(lift((1/7+O(2^(3*N)))^(1/7)), 8), N)
(Ruby)
def A309724(n)
ary = [7]
a = 7
n.times{|i|
b = (a + 7 * (7 * a ** 7 - 1)) % (8 ** (i + 2))
ary << (b - a) / (8 ** (i + 1))
a = b
}
ary
end
p A309724(100)
CROSSREFS
Digits of the k-adic integer (1/(k-1))^(1/(k-1)): A309722 (k=4), A309723 (k=6), this sequence (k=8), A225464 (k=10).
Cf. A309700.
Sequence in context: A137915 A316167 A272037 * A198114 A293384 A193012
KEYWORD
nonn,base
AUTHOR
Seiichi Manyama, Aug 14 2019
STATUS
approved