[go: up one dir, main page]

login
A309723
Digits of the 6-adic integer (1/5)^(1/5).
3
5, 0, 4, 5, 5, 1, 5, 4, 1, 2, 0, 3, 5, 3, 2, 5, 0, 0, 5, 4, 5, 3, 0, 3, 4, 2, 0, 0, 1, 4, 0, 0, 1, 2, 2, 3, 3, 4, 5, 4, 4, 5, 3, 1, 1, 5, 2, 0, 5, 4, 2, 2, 5, 4, 0, 2, 5, 5, 4, 2, 1, 1, 4, 2, 2, 4, 5, 4, 1, 5, 0, 1, 0, 4, 2, 1, 3, 4, 0, 1, 2, 0, 0, 3, 3, 1, 3, 4, 2, 3, 4, 2, 5, 0, 3, 3, 0, 1, 2, 0, 4
OFFSET
0,1
LINKS
Wikipedia, Hensel's Lemma.
FORMULA
Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 5, b(n) = b(n-1) + 5 * (5 * b(n-1)^5 - 1) mod 6^n for n > 1, then a(n) = (b(n+1) - b(n))/6^n.
PROG
(PARI) N=100; Vecrev(digits(lift(chinese(Mod((1/5+O(2^N))^(1/5), 2^N), Mod((1/5+O(3^N))^(1/5), 3^N))), 6), N)
(Ruby)
def A309723(n)
ary = [5]
a = 5
n.times{|i|
b = (a + 5 * (5 * a ** 5 - 1)) % (6 ** (i + 2))
ary << (b - a) / (6 ** (i + 1))
a = b
}
ary
end
p A309723(100)
CROSSREFS
Digits of the k-adic integer (1/(k-1))^(1/(k-1)): A309722 (k=4), this sequence (k=6), A309724 (k=8), A225464 (k=10).
Cf. A309699.
Sequence in context: A092173 A292902 A200417 * A198839 A062521 A271951
KEYWORD
nonn,base
AUTHOR
Seiichi Manyama, Aug 14 2019
STATUS
approved