OFFSET
1,4
FORMULA
G.f.: x * (1 + Sum_{n>=1} a(n)*x^n/(1 - x^(2*n))).
L.g.f.: log(Product_{n>=1} ((1 + x^n)/(1 - x^n))^(a(n)/(2*n))) = Sum_{n>=1} a(n+1)*x^n/n.
MATHEMATICA
a[n_] := a[n] = Sum[Boole[OddQ[(n - 1)/d]] a[d], {d, Divisors[n - 1]}]; a[1] = 1; Table[a[n], {n, 1, 65}]
a[n_] := a[n] = SeriesCoefficient[x (1 + Sum[a[k] x^k/(1 - x^(2 k)), {k, 1, n - 1}]), {x, 0, n}]; Table[a[n], {n, 1, 65}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 28 2019
STATUS
approved