[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A165684
Dimension of the space of Siegel cusp forms of genus 2 and dimension 2n (associated with full modular group Gamma_2).
5
0, 0, 0, 0, 1, 1, 1, 2, 2, 3, 4, 5, 5, 7, 8, 9, 11, 13, 13, 17, 18, 20, 23, 26, 27, 32, 34, 37, 41, 46, 47, 54, 57, 61, 67, 73, 75, 84, 88, 94, 101, 109, 112, 123, 129, 136, 145, 155, 159, 173, 180, 189, 200, 212, 218, 234, 243, 254, 267, 282, 289, 308, 319
OFFSET
1,8
REFERENCES
M. Eie, Dimensions of spaces of Siegel cusp forms of degree two and three, AMS, 1984, p. 44-45.
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,1,1,0,0,1,-1,-2,-1,1,0,0,1,1,0,-1).
FORMULA
G.f.: -x^5*(x^6-x-1) / ((1-x^2)*(1-x^3)*(1-x^5)*(1-x^6)). - Colin Barker, Mar 30 2013
a(n) = 1/1080*n^3 + 1/45*n^2 + O(n). (from g.f.) - Ralf Stephan, Jun 20 2014
EXAMPLE
a(5)=1 as the space of Siegel cusp forms of genus 2 and weight 10 is one-dimensional.
MATHEMATICA
N1[k_] := 2^(-7)*3^(-3)*5^(-1) (2 k^3 + 96 k^2 - 52 k - 3231); N2[k_] := 2^(-5)*3^(-3)*(17 k - 294) /; Mod[k, 12] == 0; N2[k_] := 2^(-5)*3^(-3)*(-25 k + 254) /; Mod[k, 12] == 2; N2[k_] := 2^(-5)*3^(-3)*(17 k - 86) /; Mod[k, 12] == 4; N2[k_] := 2^(-5)*3^(-3)*(-k - 42) /; Mod[k, 12] == 6; N2[k_] := 2^(-5)*3^(-3)*(-7 k + 2) /; Mod[k, 12] == 8; N2[k_] := 2^(-5)*3^(-3)*(-k + 166) /; Mod[k, 12] == 10; N3[k_] := 2^(-7)*3^(-3)*1131 /; Mod[k, 12] == 0; N3[k_] := 2^(-7)*3^(-3)*(-229) /; Mod[k, 12] == 2; N3[k_] := 2^(-7)*3^(-3)*427 /; Mod[k, 12] == 4; N3[k_] := 2^(-7)*3^(-3)*123 /; Mod[k, 12] == 6; N3[k_] := 2^(-7)*3^(-3)*203 /; Mod[k, 12] == 8; N3[k_] := 2^(-7)*3^(-3)*571 /; Mod[k, 12] == 10; N4[k_] := 5^(-1) /; Mod[k, 5] == 0; N4[k_] := -5^(-1) /; Mod[k, 5] == 3; N4[k_] := 0 /; Mod[k, 5] == 1 || Mod[k, 5] == 2 || Mod[k, 5] == 4; DimSk[k_] := N1[k] + N2[k] + N3[k] + N4[k]/; Mod[k, 2]==0; Table[DimSk[2k], {k, 1, 100}]
CoefficientList[Series[-x^4*(x^6 - x - 1)/((1 - x^2)*(1 - x^3)*(1 - x^5)*(1 - x^6)), {x, 0, 50}], x] (* Wesley Ivan Hurt, Jun 20 2014 *)
LinearRecurrence[{0, 1, 1, 0, 0, 1, -1, -2, -1, 1, 0, 0, 1, 1, 0, -1}, {0, 0, 0, 0, 1, 1, 1, 2, 2, 3, 4, 5, 5, 7, 8, 9}, 70] (* Harvey P. Dale, Dec 25 2016 *)
CROSSREFS
Cf. A029143 (dimension of the full space of Siegel modular forms of genus 2).
Sequence in context: A183003 A351007 A307779 * A342519 A307780 A340276
KEYWORD
nonn,easy
AUTHOR
Kilian Kilger (kilian(AT)nihilnovi.de), Sep 24 2009
EXTENSIONS
More terms from Wesley Ivan Hurt, Jun 20 2014
STATUS
approved