[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A183003
a(n) = A183002(n)/2.
4
0, 0, 0, 1, 1, 2, 2, 3, 4, 5, 5, 7, 7, 8, 9, 11, 11, 13, 13, 15, 16, 17, 17, 20, 21, 22, 23, 25, 25, 28, 28, 30, 31, 32, 33, 37, 37, 38, 39, 42, 42, 45, 45, 47, 49, 50, 50, 54, 55, 57, 58, 60, 60, 63, 64, 67, 68, 69, 69, 74, 74, 75, 77, 80, 81, 84, 84, 86, 87, 90, 90, 95, 95, 96, 98, 100, 101, 104, 104, 108, 110, 111, 111, 116, 117, 118, 119, 122, 122, 127, 128, 130, 131, 132, 133, 138, 138, 140, 142, 146
OFFSET
1,6
COMMENTS
For n >= 2, a(n) is the number of partitions of n-1 into 3 parts such that the largest part is greater than or equal to the product of the other two. For example, a(9) = 4 since the partitions for 8 would be 1+1+6 = 1+2+5 = 1+3+4 = 2+2+4, but not 2+3+3 since 2*3 > 3. - Wesley Ivan Hurt, Jan 03 2022
Conjecture: partial sums of A072670. - Sean A. Irvine, Jul 14 2022
FORMULA
a(n) = Sum_{k=1..floor((n-1)/3)} Sum_{i=k..floor((n-k-1)/2)} sign(floor((n-i-k-1)/(i*k))). - Wesley Ivan Hurt, Jan 03 2022
a(n) = (1/2) * Sum_{k=1..n} (tau(k)-2 + (tau(k) mod 2)), tau = A000005. - Alois P. Heinz, Jan 04 2022
a(n) ~ n * (log(n) + 2*gamma - 3) / 2, where gamma is Euler's constant (A001620). - Amiram Eldar, Jan 19 2024
MATHEMATICA
Accumulate[Table[d = DivisorSigma[0, n]; If[OddQ[d], d - 1, d - 2], {n, 100}]]/2
PROG
(PARI) a(n) = sum(k=1, n, numdiv(k) - 2 + numdiv(k)%2)/2; \\ Michel Marcus, Jan 04 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Jan 27 2011
STATUS
approved