[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A304612
a(n) = 75*2^n - 38.
4
37, 112, 262, 562, 1162, 2362, 4762, 9562, 19162, 38362, 76762, 153562, 307162, 614362, 1228762, 2457562, 4915162, 9830362, 19660762, 39321562, 78643162, 157286362, 314572762, 629145562, 1258291162, 2516582362, 5033164762, 10066329562, 20132659162, 40265318362, 80530636762, 161061273562
OFFSET
0,1
COMMENTS
a(n) is the number of vertices of the nanostar dendrimer NS[n] from the Mirzargar reference.
LINKS
M. Mirzargar, PI, Szeged and edge Szeged polynomials of a dendrimer nanostar, MATCH, Commun. Math. Comput. Chem. 62, 2009, 363-370.
FORMULA
G.f.: (37 + x)/((1 - x)*(1 - 2*x)). - Bruno Berselli, May 17 2018
MAPLE
seq(75*2^n-38, n = 0 .. 40);
MATHEMATICA
75*2^Range[0, 50] - 38 (* Paolo Xausa, Jul 31 2024 *)
PROG
(PARI) a(n) = 75*2^n - 38; \\ Altug Alkan, May 17 2018
(PARI) Vec((37 + x)/((1 - x)*(1 - 2*x)) + O(x^40)) \\ Colin Barker, May 23 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, May 16 2018
STATUS
approved