# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a304612 Showing 1-1 of 1 %I A304612 #26 Jul 31 2024 09:07:33 %S A304612 37,112,262,562,1162,2362,4762,9562,19162,38362,76762,153562,307162, %T A304612 614362,1228762,2457562,4915162,9830362,19660762,39321562,78643162, %U A304612 157286362,314572762,629145562,1258291162,2516582362,5033164762,10066329562,20132659162,40265318362,80530636762,161061273562 %N A304612 a(n) = 75*2^n - 38. %C A304612 a(n) is the number of vertices of the nanostar dendrimer NS[n] from the Mirzargar reference. %H A304612 Colin Barker, Table of n, a(n) for n = 0..1000 %H A304612 M. Mirzargar, PI, Szeged and edge Szeged polynomials of a dendrimer nanostar, MATCH, Commun. Math. Comput. Chem. 62, 2009, 363-370. %H A304612 Index entries for linear recurrences with constant coefficients, signature (3,-2). %F A304612 G.f.: (37 + x)/((1 - x)*(1 - 2*x)). - _Bruno Berselli_, May 17 2018 %p A304612 seq(75*2^n-38, n = 0 .. 40); %t A304612 75*2^Range[0, 50] - 38 (* _Paolo Xausa_, Jul 31 2024 *) %o A304612 (PARI) a(n) = 75*2^n - 38; \\ _Altug Alkan_, May 17 2018 %o A304612 (PARI) Vec((37 + x)/((1 - x)*(1 - 2*x)) + O(x^40)) \\ _Colin Barker_, May 23 2018 %Y A304612 Cf. A304613, A304614, A304615. %K A304612 nonn,easy %O A304612 0,1 %A A304612 _Emeric Deutsch_, May 16 2018 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE