[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A304610
a(n) = 157*n - 40 (n>=1).
2
117, 274, 431, 588, 745, 902, 1059, 1216, 1373, 1530, 1687, 1844, 2001, 2158, 2315, 2472, 2629, 2786, 2943, 3100, 3257, 3414, 3571, 3728, 3885, 4042, 4199, 4356, 4513, 4670, 4827, 4984, 5141, 5298, 5455, 5612, 5769, 5926, 6083, 6240
OFFSET
1,1
COMMENTS
a(n) is the second Zagreb index of the polymer B[n,1], defined pictorially in the Bodroza-Pantic et al. reference (Fig. 4).
The second Zagreb index of a simple connected graph is the sum of the degree products d(i)d(j) over all edges ij of the graph.
The M-polynomial of B[n,1] is M(B[n,1]; x,y) = 2*(2*n+1)*x^2*y^2 + 4*(n+1)*x^2*y^3 + (13*n-8)*x^3*y^3.
LINKS
O. Bodroza-Pantic, I. Gutman, and S. J. Cyvin, Algebraic structure count of some non-benzenoid conjugated polymers, ACH - Models in Chemistry, 133 (1-2), 27-41, 1996.
E. Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102.
FORMULA
From Colin Barker, May 18 2018: (Start)
G.f.: x*(117 + 40*x) / (1 - x)^2.
a(n) = 2*a(n-1) - a(n-2) for n>2.
(End)
MAPLE
seq(157*n-40, n = 1 .. 40);
MATHEMATICA
Table[157n-40, {n, 40}] (* or *) LinearRecurrence[{2, -1}, {117, 274}, 40] (* Harvey P. Dale, Oct 13 2019 *)
PROG
(GAP) List([1..40], n->157*n-40); # Muniru A Asiru, May 17 2018
(PARI) a(n) = 157*n - 40; \\ Altug Alkan, May 18 2018
(PARI) Vec(x*(117 + 40*x) / (1 - x)^2 + O(x^40)) \\ Colin Barker, May 18 2018
CROSSREFS
Cf. A304609.
Sequence in context: A063332 A063338 A304611 * A298047 A252861 A252854
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, May 17 2018
STATUS
approved