[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A296170
E.g.f. A(x) satisfies: [x^(n-1)] A(x)^(n^2) = [x^n] A(x)^(n^2) for n>=1.
19
1, 1, -1, -11, -239, -17059, -2145689, -412595231, -111962826751, -40590007936199, -18900753214178609, -10974885891916507219, -7765167486697279401071, -6571694718107813687003051, -6551841491106355785902247049, -7597507878436131044487467850599, -10136619271768255373949409579309439, -15416099624633773180711565727641136271, -26508391106594400233543066679525341764961
OFFSET
0,4
COMMENTS
Compare e.g.f. to: [x^(n-1)] exp(x)^n = [x^n] exp(x)^n for n>=1.
LINKS
FORMULA
The logarithm of the e.g.f. A(x) is an integer series:
_ log(A(x)) = Sum_{n>=1} A296171(n) * x^n.
E.g.f. A(x) satisfies:
_ 1/n! * d^n/dx^n A(x)^(n^2) = 1/(n-1)! * d^(n-1)/dx^(n-1) A(x)^(n^2) for n>=1, when evaluated at x = 0.
a(n) ~ c * d^n * n^(2*n-2) / exp(2*n), where d = -4/(LambertW(-2*exp(-2))*(2+LambertW(-2*exp(-2)))) = 6.17655460948348035823168... and c = -0.1875440087... - Vaclav Kotesovec, Dec 23 2017
EXAMPLE
E.g.f.: A(x) = 1 + x - x^2/2! - 11*x^3/3! - 239*x^4/4! - 17059*x^5/5! - 2145689*x^6/6! - 412595231*x^7/7! - 111962826751*x^8/8! - 40590007936199*x^9/9! - 18900753214178609*x^10/10! - 10974885891916507219*x^11/11! - 7765167486697279401071*x^12/12! - 6571694718107813687003051*x^13/13! - 6551841491106355785902247049*x^14/14! - 7597507878436131044487467850599*x^15/15! +...
To illustrate [x^(n-1)] A(x)^(n^2) = [x^n] A(x)^(n^2), form a table of coefficients of x^k in A(x)^(n^2) that begins as
n=1: [(1), (1), -1/2, -11/6, -239/24, -17059/120, -2145689/720, ...];
n=2: [1, (4), (4), -28/3, -196/3, -10472/15, -614264/45, ...];
n=3: [1, 9, (63/2), (63/2), -1701/8, -98217/40, -3168081/80, ...];
n=4: [1, 16, 112, (1232/3), (1232/3), -95648/15, -4835264/45, ...];
n=5: [1, 25, 575/2, 11725/6, (190225/24), (190225/24), ...];
n=6: [1, 36, 612, 6444, 45684, (1043784/5), (1043784/5), ...];
n=7: [1, 49, 2303/2, 102949/6, 4313617/24, 164086349/120, (5086480231/720), (5086480231/720), ...];
...
in which the diagonals indicated by parenthesis are equal.
Dividing the coefficients of x^(n-1)/(n-1)! in A(x)^(n^2) by n^2, we obtain the following sequence:
[1, 1, 7, 154, 7609, 695856, 103805719, 23134327168, 7227250033329, 3017857024161280, 1623903877812828871, ..., A296232(n), ...].
LOGARITHMIC PROPERTY.
Amazingly, the logarithm of the e.g.f. A(x) is an integer series:
log(A(x)) = x - x^2 - x^3 - 9*x^4 - 134*x^5 - 2852*x^6 - 79096*x^7 - 2699480*x^8 - 109201844*x^9 - 5100872244*x^10 - 269903909820*x^11 - 15944040740604*x^12 - 1039553309158964*x^13 - 74123498185170292*x^14 - 5736368141560365292*x^15 - 478780244956262592748*x^16 - 42865943103053965559668*x^17 - 4097785410628237071311764*x^18 - 416572537937169684523985420*x^19 - 44873737158384968851319470220*x^20 +...+ A296171(n)*x^n +...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n+1, A=concat(A, 0); V=Vec(Ser(A)^((#A-1)^2)); A[#A] = (V[#A-1] - V[#A])/(#A-1)^2 ); n!*A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Dec 07 2017
STATUS
approved