Displaying 1-10 of 18 results found.
G.f. A(x) satisfies: G(A(x)) = exp(x), where G(x) equals the e.g.f. of A296170.
+20
4
1, 1, 3, 19, 226, 4259, 110514, 3626207, 143043592, 6567931068, 343278693103, 20092744961109, 1300754163383700, 92223505422990050, 7104166647498916816, 590661172651143976231, 52710327177111760030280, 5024720072707894279118236, 509553454073135435969780828, 54771493019290133717304608756, 6220332385328132888848047735930, 744260531662484056612631555859467
COMMENTS
E.g.f. G(x) of A296170 satisfies: [x^(n-1)] G(x)^(n^2) = [x^n] G(x)^(n^2) for n>=1.
FORMULA
G.f. is the series reversion of the logarithm of the e.g.f. of A296170.
a(n) ~ c * d^n * n! / n^3, where d = -4/(LambertW(-2*exp(-2)) * (2 + LambertW(-2*exp(-2)))) = 6.17655460948348035823168... and c = (2 + LambertW(-2*exp(-2)))^2 * sqrt(-LambertW(-2*exp(-2))*(1 + LambertW(-2*exp(-2)))) / (8*sqrt(2)*Pi) = 0.0350943105... - Vaclav Kotesovec, Dec 22 2017, updated Aug 06 2018
EXAMPLE
G.f. A(x) = x + x^2 + 3*x^3 + 19*x^4 + 226*x^5 + 4259*x^6 + 110514*x^7 + 3626207*x^8 + 143043592*x^9 + 6567931068*x^10 + 343278693103*x^11 + 20092744961109*x^12 + 1300754163383700*x^13 + 92223505422990050*x^14 + 7104166647498916816*x^15 +...
The series reversion equals the logarithm of the e.g.f. of A296170, which begins:
Series_Reversion(A(x)) = x - x^2 - x^3 - 9*x^4 - 134*x^5 - 2852*x^6 - 79096*x^7 - 2699480*x^8 - 109201844*x^9 - 5100872244*x^10 - 269903909820*x^11 - 15944040740604*x^12 - 1039553309158964*x^13 - 74123498185170292*x^14 - 5736368141560365292*x^15 +...+ A296171(n)*x^n +...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n+1, A=concat(A, 0); V=Vec(Ser(A)^((#A-1)^2)); A[#A] = (V[#A-1] - V[#A])/(#A-1)^2 ); polcoeff(serreverse(log(Ser(A))), n)}
for(n=1, 30, print1(a(n), ", "))
a(n) = [x^n/n!] G(x)^((n+1)^2) / (n+1)^2 for n>=0, where G(x) is the e.g.f. of A296170.
+20
2
1, 1, 7, 154, 7609, 695856, 103805719, 23134327168, 7227250033329, 3017857024161280, 1623903877812828871, 1094152976804148581376, 902056146753714911194537, 892968703742747996041990144, 1044915082876352591016398853975, 1426374051728780629533978596663296, 2245953139539256017165567029993025889
COMMENTS
E.g.f. G(x) of A296170 satisfies: [x^(n-1)] G(x)^(n^2) = [x^n] G(x)^(n^2) for n>=1.
FORMULA
a(n-1) = [x^n/n!] G(x)^(n^2) / n^2 for n>=1, where G(x) is the e.g.f. of A296170.
a(7*n) = 1 (mod 7) for n>=0.
a(7*n+2) = a(7*n+3) = a(7*n+4) = a(7*n+5) = 0 (mod 7) for n>=0.
a(n) ~ c * n^(2*n - 2), where c = 2.165959933... - Vaclav Kotesovec, Dec 20 2017
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n+1, A=concat(A, 0); V=Vec(Ser(A)^((#A-1)^2)); A[#A] = (V[#A-1] - V[#A])/(#A-1)^2 ); n!*polcoeff(Ser(A)^((n+1)^2)/((n+1)^2), n)}
for(n=0, 30, print1(a(n), ", "))
O.g.f. A(x) satisfies: [x^n] exp( n^2 * A(x) ) = [x^(n-1)] exp( n^2 * A(x) ) for n>=1.
+10
18
1, -1, -1, -9, -134, -2852, -79096, -2699480, -109201844, -5100872244, -269903909820, -15944040740604, -1039553309158964, -74123498185170292, -5736368141560365292, -478780244956262592748, -42865943103053965559668, -4097785410628237071311764, -416572537937169684523985420, -44873737158384968851319470220, -5106038963454360810619516396820, -611986780692307637617151164361140, -77066319756799442735378541663266476
COMMENTS
E.g.f. G(x) of A296170 satisfies: [x^(n-1)] G(x)^(n^2) = [x^n] G(x)^(n^2) for n>=1.
EXAMPLE
G.f. A(x) = x - x^2 - x^3 - 9*x^4 - 134*x^5 - 2852*x^6 - 79096*x^7 - 2699480*x^8 - 109201844*x^9 - 5100872244*x^10 - 269903909820*x^11 - 15944040740604*x^12 - 1039553309158964*x^13 - 74123498185170292*x^14 - 5736368141560365292*x^15 + ...
such that
G(x) = exp(A(x)) = 1 + x - x^2/2! - 11*x^3/3! - 239*x^4/4! - 17059*x^5/5! - 2145689*x^6/6! - 412595231*x^7/7! - 111962826751*x^8/8! - 40590007936199*x^9/9! - 18900753214178609*x^10/10! + ... + A296170(n)*x^n/n! + ...
satisfies [x^(n-1)] G(x)^(n^2) = [x^n] G(x)^(n^2) for n>=1.
RELATED SERIES.
Series_Reversion(A(x)) = x + x^2 + 3*x^3 + 19*x^4 + 226*x^5 + 4259*x^6 + 110514*x^7 + 3626207*x^8 + 143043592*x^9 + 6567931068*x^10 + 343278693103*x^11 + 20092744961109*x^12 + 1300754163383700*x^13 + ... + A295812(n)*x^n + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n+1, A=concat(A, 0); V=Vec(Ser(A)^((#A-1)^2)); A[#A] = (V[#A-1] - V[#A])/(#A-1)^2 ); polcoeff(log(Ser(A)), n)}
for(n=1, 30, print1(a(n), ", "))
E.g.f. A(x) satisfies: [x^n] A(x)^(n^2) = n^2 * [x^(n-1)] A(x)^(n^2) for n>=1.
+10
13
1, 1, 5, 175, 18385, 3759701, 1258735981, 630063839035, 445962163492385, 429694421369414185, 547875295770399220981, 903754519692129905068391, 1892423689107542226463430065, 4948056864672913520114055888445, 15922007799835205487157437619131485, 62245856465769048392433555378169339891, 292266373167286246870149657443033728860481
COMMENTS
Compare e.g.f. to: [x^n] exp(x)^(n^2) = n * [x^(n-1)] exp(x)^(n^2) for n>=1.
FORMULA
E.g.f. A(x) satisfies: log(A(x)) = Sum_{n>=1} A300591(n)*x^n, a power series in x with integer coefficients.
a(n) ~ c * n!^3 * n^2, where c = 0.1354708370957778563796... - Vaclav Kotesovec, Oct 13 2020
EXAMPLE
E.g.f.: A(x) = 1 + x + 5*x^2/2! + 175*x^3/3! + 18385*x^4/4! + 3759701*x^5/5! + 1258735981*x^6/6! + 630063839035*x^7/7! + 445962163492385*x^8/8! + 429694421369414185*x^9/9! + 547875295770399220981*x^10/10! + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k in A(x)^(n^2) begins:
n=1: [(1), (1), 5/2, 175/6, 18385/24, 3759701/120, 1258735981/720, ...];
n=2: [1, (4), (16), 452/3, 10448/3, 2037388/15, 333368656/45, ...];
n=3: [1, 9, (117/2), (1053/2), 79803/8, 14107743/40, 1472857749/80, ...];
n=4: [1, 16, 160, (4880/3), (78080/3), 11770672/15, 1707161056/45, ...];
n=5: [1, 25, 725/2, 27175/6, (1642225/24), (41055625/24), ...];
n=6: [1, 36, 720, 11340, 180720, (19548324/5), (703739664/5), ...];
n=7: [1, 49, 2597/2, 154399/6, 11125009/24, (1138996229/120), (205943018701/720), ...]; ...
in which the coefficients in parenthesis are related by
1 = 1*(1); 16 = 2^2*(4); 1053/2 = 3^2*(117/2); 78080/3 = 4^2*(4880/3); 41055625/24 = 5^2*(1642225/24); ...
illustrating that: [x^n] A(x)^(n^2) = n^2 * [x^(n-1)] A(x)^(n^2).
LOGARITHMIC PROPERTY.
The logarithm of the e.g.f. is the integer series:
log(A(x)) = x + 2*x^2 + 27*x^3 + 736*x^4 + 30525*x^5 + 1715454*x^6 + 123198985*x^7 + 10931897664*x^8 + 1172808994833*x^9 + 149774206572050*x^10 + ... + A300591(n)*x^n + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n+1, A=concat(A, 0); V=Vec(Ser(A)^((#A-1)^2)); A[#A] = ((#A-1)^2*V[#A-1] - V[#A])/(#A-1)^2 ); n!*A[n+1]}
for(n=0, 30, print1(a(n), ", "))
E.g.f. A(x) satisfies: [x^n] A(x)^(n^2) = n^3 * [x^(n-1)] A(x)^(n^2) for n>=1.
+10
8
1, 1, 13, 1333, 438073, 328561681, 482408372341, 1262989939509733, 5507311107090685873, 37883505322347710775553, 393149949374099099160049501, 5930998808712507352448964186421, 126060064477829234977371818938653673, 3675839897921109642941288187056728970833, 143727814785299582494066294788162327508528453
COMMENTS
Compare e.g.f. to: [x^n] exp(x)^(n^2) = n * [x^(n-1)] exp(x)^(n^2) for n>=1.
FORMULA
E.g.f. A(x) satisfies: log(A(x)) = Sum_{n>=1} A300593(n)*x^n, a power series in x with integer coefficients.
a(n) ~ c * n!^4, where c = 3.1056678107899395562612789210816... - Vaclav Kotesovec, Oct 14 2020
EXAMPLE
E.g.f.: A(x) = 1 + x + 13*x^2/2! + 1333*x^3/3! + 438073*x^4/4! + 328561681*x^5/5! + 482408372341*x^6/6! + 1262989939509733*x^7/7! + 5507311107090685873*x^8/8! + 37883505322347710775553*x^9/9! + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k in A(x)^(n^2) begins:
n=1: [(1), (1), 13/2, 1333/6, 438073/24, 328561681/120, ...];
n=2: [1, (4), (32), 2912/3, 228032/3, 167874308/15, ...];
n=3: [1, 9, (189/2), (5103/2), 1468467/8, 1045214163/40, ...];
n=4: [1, 16, 224, (17024/3), (1089536/3), 735471632/15, ...];
n=5: [1, 25, 925/2, 70525/6, (15835225/24), (1979403125/24), ...];
n=6: [1, 36, 864, 23328, 1161792, (654796044/5), (141435945504/5), ...]; ...
in which the coefficients in parenthesis are related by
1 = 1*1; 32 = 2^3*4; 5103/2 = 3^3*189/2; 1089536/3 = 4^3*17024/3; ...
illustrating that: [x^n] A(x)^(n^2) = n^3 * [x^(n-1)] A(x)^(n^2).
LOGARITHMIC PROPERTY.
The logarithm of the e.g.f. is the integer series:
log(A(x)) = x + 6*x^2 + 216*x^3 + 18016*x^4 + 2718575*x^5 + 667151244*x^6 + 249904389518*x^7 + 136335045655680*x^8 + 104258627494173747*x^9 + 108236370325030253850*x^10 + 148475074256982964816314*x^11 + 263023328027145941803648512*x^12 + ... + A300593(n)*x^n + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n+1, A=concat(A, 0); V=Vec(Ser(A)^((#A-1)^2)); A[#A] = ((#A-1)^3*V[#A-1] - V[#A])/(#A-1)^2 ); n!*A[n+1]}
for(n=0, 30, print1(a(n), ", "))
E.g.f. A(x) satisfies: [x^n] A(x)^(n^3) = n^3 * [x^(n-1)] A(x)^(n^3) for n>=1.
+10
8
1, 1, 9, 1483, 976825, 1507281021, 4409747597401, 21744850191313999, 167557834535988306033, 1913194223179191462419065, 31110747474489521617502800201, 698529144858380953105954686101811, 21123268203104470199318422678044241129, 842759726425517953579189712209822358428213, 43599233739340643789919321494623289001407934105
COMMENTS
Compare e.g.f. to: [x^n] exp(x)^(n^3) = n^2 * [x^(n-1)] exp(x)^(n^3) for n>=1.
FORMULA
E.g.f. A(x) satisfies: log(A(x)) = Sum_{n>=1} A300595(n)*x^n, a power series in x with integer coefficients.
a(n) ~ c * n!^4 * n^3, where c = 0.40774346023... - Vaclav Kotesovec, Oct 14 2020
EXAMPLE
E.g.f.: A(x) = 1 + x + 9*x^2/2! + 1483*x^3/3! + 976825*x^4/4! + 1507281021*x^5/5! + 4409747597401*x^6/6! + 21744850191313999*x^7/7! + 167557834535988306033*x^8/8! + 1913194223179191462419065*x^9/9! + 31110747474489521617502800201*x^10/10! + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k in A(x)^(n^3) begins:
n=1: [(1), (1), 9/2, 1483/6, 976825/24, 502427007/40, 4409747597401/720]
n=2: [1, (8), (64), 6856/3, 1022528/3, 1543097816/15, 2237393526784/45]
n=3: [1, 27, (945/2), (25515/2), 10692675/8, 14849374869/40, 1397853444500
n=4: [1, 64, 2304, (226880/3), (14520320/3), 5124803136/5, 20241220116736/
n=5: [1, 125, 16625/2, 2510375/6, (553359625/24), (69169953125/24), ...];
n=6: [1, 216, 24192, 1918728, 131302080, (56555402904/5), (12215967027264/5), ...]; ...
in which the coefficients in parenthesis are related by
1 = 1*1; 64 = 2^3*8; 25515/2 = 3^3*945/2; 14520320/3 = 4^3*226880/3; ...
illustrating that: [x^n] A(x)^(n^3) = n^3 * [x^(n-1)] A(x)^(n^3).
LOGARITHMIC PROPERTY.
The logarithm of the e.g.f. is the integer series:
log(A(x)) = x + 4*x^2 + 243*x^3 + 40448*x^4 + 12519125*x^5 + 6111917748*x^6 + 4308276119854*x^7 + 4151360558858752*x^8 + 5268077625693186225*x^9 + 8567999843251994553500*x^10 + ... + A300595(n)*x^n + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n+1, A=concat(A, 0); V=Vec(Ser(A)^((#A-1)^3)); A[#A] = ((#A-1)^3*V[#A-1] - V[#A])/(#A-1)^3 ); EGF=Ser(A); n!*A[n+1]}
for(n=0, 30, print1(a(n), ", "))
E.g.f. A(x) satisfies: [x^n] A(x)^(2*n) = (n+1) * [x^(n-1)] A(x)^(2*n) for n>=1.
+10
8
1, 1, 3, 31, 697, 25761, 1371691, 97677343, 8869533681, 993709302337, 134086553693011, 21392941696576671, 3977310371182762153, 851537642070562468321, 207892899850805427254907, 57394298500033495294907551, 17789220343418322663802383841, 6151146653207427022767433596033, 2359535664677835451305256629862051, 999033160522078788619730346474821407
COMMENTS
Compare e.g.f. to: [x^n] exp(x)^(2*n) = 2 * [x^(n-1)] exp(x)^(2*n) for n>=1.
FORMULA
E.g.f. A(x) satisfies: A(x) = exp( x * (A(x) - x*A'(x)) / (A(x) - 2*x*A'(x)) ).
a(n) ~ c * n!^2 * n^3, where c = 0.008789136598... - Vaclav Kotesovec, Oct 24 2020
EXAMPLE
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 31*x^3/3! + 697*x^4/4! + 25761*x^5/5! + 1371691*x^6/6! + 97677343*x^7/7! + 8869533681*x^8/8! + 993709302337*x^9/9! + 134086553693011*x^10/10! + ...
such that [x^n] A(x)^(2*n) = (n+1) * [x^(n-1)] A(x)^(2*n) for n>=1.
RELATED SERIES.
A(x)^2 = 1 + 2*x + 8*x^2/2! + 80*x^3/3! + 1696*x^4/4! + 60352*x^5/5! + 3134464*x^6/6! + 219316736*x^7/7! + 19655797760*x^8/8! + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k in A(x)^(2*n) begin:
n=1: [(1), (2), 4, 40/3, 212/3, 7544/15, 195904/45, 13707296/315, ...];
n=2: [1, (4), (12), 128/3, 632/3, 6976/5, 515776/45, 34760896/315, ...];
n=3: [1, 6, (24), (96), 468, 14664/5, 114384/5, 7407552/35, ...];
n=4: [1, 8, 40, (544/3), (2720/3), 82496/15, 1843264/45, 22923136/63, ...];
n=5: [1, 10, 60, 920/3, (4820/3), (9640), 622880/9, 37242080/63, ...];
n=6: [1, 12, 84, 480, 2664, (80448/5), (563136/5), 32495424/35, ...];
n=7: [1, 14, 112, 2128/3, 12572/3, 387128/15, (8018416/45), (64147328/45), ...]; ...
in which the coefficients in parenthesis are related by
2 = 2*(1); 12 = 3*(4); 96 = 4*(24); 2720/3 = 5*(544/3); 9640 = 6*(4820/3); 563136/5 = 7*(80448/5); 64147328/45 = 8*(8018416/45); ...
illustrating that: [x^n] A(x)^(2*n) = (n+1) * [x^(n-1)] A(x)^(2*n).
LOGARITHMIC PROPERTY.
The logarithm of the e.g.f. is an integer power series in x satisfying
log(A(x)) = x * (1 - x*A'(x)/A(x)) / (1 - 2*x*A'(x)/A(x));
explicitly,
log(A(x)) = x + x^2 + 4*x^3 + 24*x^4 + 184*x^5 + 1672*x^6 + 17296*x^7 + 198800*x^8 + 2499200*x^9 + 33992000*x^10 + 496281344*x^11 + 7731823616*x^12 + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n+1, A=concat(A, 0); V=Vec(Ser(A)^(2*(#A-1))); A[#A] = ((#A)*V[#A-1] - V[#A])/(2*(#A-1)) ); n!*polcoeff( Ser(A), n)}
for(n=0, 20, print1(a(n), ", "))
(PARI) {a(n) = my(A=1); for(i=1, n, A = exp( x*(A-x*A')/(A-2*x*A' +x*O(x^n)) ) ); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
E.g.f. A(x) satisfies: [x^n] A(x)^(3*n) = (n + 2) * [x^(n-1)] A(x)^(3*n) for n>=1.
+10
8
1, 1, 3, 37, 1009, 44541, 2799931, 233188033, 24562692897, 3168510747769, 488856473079571, 88597562768075901, 18595324838343722833, 4468203984338696710837, 1217521669261709053889739, 373205252376454629490607641, 127806482596653000272128733761, 48605321514711360780713536416753, 20419150659462692416601828820774307, 9431006202634362924849710001022454869
COMMENTS
Compare to: [x^n] exp(x)^(3*n) = 3 * [x^(n-1)] exp(x)^(3*n) for n>=1.
FORMULA
E.g.f. A(x) satisfies: A(x) = exp( x * (A(x) - 2*x*A'(x)) / (A(x) - 3*x*A'(x)) ).
a(n) ~ c * (n!)^2 * n^5, where c = 0.0001464056080437... - Vaclav Kotesovec, Mar 20 2018
EXAMPLE
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 37*x^3/3! + 1009*x^4/4! + 44541*x^5/5! + 2799931*x^6/6! + 233188033*x^7/7! + 24562692897*x^8/8! + 3168510747769*x^9/9! + 488856473079571*x^10/10! + ...
such that [x^n] A(x)^(3*n) = (n+2) * [x^(n-1)] A(x)^(3*n) for n>=1.
RELATED SERIES.
A(x)^3 = 1 + 3*x + 15*x^2/2! + 171*x^3/3! + 4185*x^4/4! + 173583*x^5/5! + 10491039*x^6/6! + 850141575*x^7/7! + 87745941873*x^8/8! + 11141030530395*x^9/9! + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients in A(x)^(3*n) begins:
n=1: [(1), (3), 15/2, 57/2, 1395/8, 57861/40, 1165671/80, 18892035/112, ...];
n=2: [1, (6), (24), 102, 576, 21834/5, 206244/5, 15974712/35, ...];
n=3: [1, 9, (99/2), (495/2), 11259/8, 401463/40, 7120899/80, 525246849/560, ...];
n=4: [1, 12, 84, (492), (2952), 102708/5, 864756/5, 60722784/35, ...];
n=5: [1, 15, 255/2, 1725/2, (44595/8), (312165/8), 5077035/16, 340795215/112, ...];
n=6: [1, 18, 180, 1386, 9720, (349542/5), (2796336/5), 36178488/7, ...];
n=7: [1, 21, 483/2, 4179/2, 127323/8, 4767147/40, (76271139/80), (686440251/80), ...]; ...
in which the coefficients in parenthesis are related by
3 = 3*(1); 24 = 4*(6); 495/2 = 5*(99/2); 2952 = 6*(492); 312165/8 = 7*(44595/8); 2796336/5 = 8*(349542/5); 686440251/80 = 9*(76271139/80); ...
illustrating that: [x^n] A(x)^(3*n) = (n+2) * [x^(n-1)] A(x)^(3*n).
LOGARITHMIC PROPERTY.
The logarithm of the e.g.f. is an integer power series in x satisfying
log(A(x)) = x * (1 - 2*x*A'(x)/A(x)) / (1 - 3*x*A'(x)/A(x));
explicitly,
log(A(x)) = x + x^2 + 5*x^3 + 36*x^4 + 327*x^5 + 3489*x^6 + 42048*x^7 + 559008*x^8 + 8073243*x^9 + 125328411*x^10 + 2075525505*x^11 + 36460943208*x^12 + ... + A300987(n)*x^n + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n+1, A=concat(A, 0); V=Vec(Ser(A)^(3*(#A-1))); A[#A] = ((#A+1)*V[#A-1] - V[#A])/(3*(#A-1)) ); n!*polcoeff( Ser(A), n)}
for(n=0, 25, print1(a(n), ", "))
(PARI) {a(n) = my(A=1); for(i=1, n, A = exp( x*(A-2*x*A')/(A-3*x*A' +x*O(x^n)) ) ); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
E.g.f. A(x) satisfies: [x^n] A(x)^(n*(n+1)) = n*(n+1) * [x^(n-1)] A(x)^(n*(n+1)) for n>=1.
+10
7
1, 1, 7, 307, 37537, 8755561, 3304572391, 1847063377867, 1447456397632897, 1532041772833285777, 2130468278450240803591, 3808068399270998260188451, 8590473242021318921848038817, 24074336129439663228349612217977, 82657249526888437632759608331784807, 343425012928825298349935150449843384891, 1707701025594135213863151839769061397729281
COMMENTS
Compare e.g.f. to: [x^n] exp(x)^(n*(n+1)) = (n+1) * [x^(n-1)] exp(x)^(n*(n+1)) for n>=1.
FORMULA
a(n) ~ c * n!^3 * n^3, where c = 0.044039511494832369374... - Vaclav Kotesovec, Oct 14 2020
EXAMPLE
E.g.f.: A(x) = 1 + x + 7*x^2/2! + 307*x^3/3! + 37537*x^4/4! + 8755561*x^5/5! + 3304572391*x^6/6! + 1847063377867*x^7/7! + 1447456397632897*x^8/8! + 1532041772833285777*x^9/9! + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k in A(x)^(n*(n+1)) begins:
n=1: [(1), (2), 8, 328/3, 9728/3, 2241184/15, 420248704/45, ...];
n=2: [1, (6), (36), 432, 11328, 2470464/5, 150254784/5, ...];
n=3: [1, 12, (108), (1296), 29136, 5776128/5, 335166336/5, ...];
n=4: [1, 20, 260, (10480/3), (209600/3), 7265600/3, 1173400640/9, ...];
n=5: [1, 30, 540, 8640, (166800), (5004000), 241367040, 116509893120/7...];
n=6: [1, 42, 1008, 19656, 396816, (53339328/5), (2240251776/5), ...];
n=7: [1, 56, 1736, 124096/3, 2767184/3, 355355392/15, (38932329856/45), (2180210471936/45), ...]; ...
in which the coefficients in parenthesis are related by
2 = 1*2*(1); 36 = 2*3*(6); 1296 = 3*4*(108); 209600/3 = 4*5*(10480/3); 5004000 = 5*6*(166800); 2240251776/5 = 6*7*(53339328/5); ...
illustrating that: [x^n] A(x)^(n*(n+1)) = n*(n+1) * [x^(n-1)] A(x)^(n*(n+1)).
LOGARITHMIC PROPERTY.
The logarithm of the e.g.f. is the integer series:
log(A(x)) = x + 3*x^2 + 48*x^3 + 1510*x^4 + 71280*x^5 + 4511808*x^6 + 361640832*x^7 + 35516910960*x^8 + 4184770003200*x^9 + ... + A300871(n)*x^n + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n+1, A=concat(A, 0); V=Vec(Ser(A)^((#A-1)*(#A))); A[#A] = ((#A-1)*(#A)*V[#A-1] - V[#A])/(#A-1)/(#A) ); EGF=Ser(A); n!*A[n+1]}
for(n=0, 20, print1(a(n), ", "))
E.g.f. A(x) satisfies: [x^n] A(x)^(4*n) = (n + 3) * [x^(n-1)] A(x)^(4*n) for n>=1.
+10
7
1, 1, 3, 43, 1369, 69561, 4991371, 471516403, 56029153713, 8112993527089, 1398528216254611, 281935928284459131, 65543089930613822473, 17373185629100099938153, 5201713100466658289659419, 1745470558150260528082445251, 652016607740826946854349450081, 269558306371535265856134699842913, 122707064351998882900943162086492963, 61225312946191234549695844364141862859
COMMENTS
Compare to: [x^n] exp(x)^(4*n) = 4 * [x^(n-1)] exp(x)^(4*n) for n>=1.
FORMULA
E.g.f. A(x) satisfies: A(x) = exp( x * (A(x) - 3*x*A'(x)) / (A(x) - 4*x*A'(x)) ).
EXAMPLE
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 43*x^3/3! + 1369*x^4/4! + 69561*x^5/5! + 4991371*x^6/6! + 471516403*x^7/7! + 56029153713*x^8/8! + 8112993527089*x^9/9! + ...
such that [x^n] A(x)^(4*n) = (n+3) * [x^(n-1)] A(x)^(4*n) for n>=1.
RELATED SERIES.
A(x)^4 = 1 + 4*x + 24*x^2/2! + 304*x^3/3! + 8320*x^4/4! + 390144*x^5/5! + 26653696*x^6/6! + 2434011136*x^7/7! + 282056564736*x^8/8! + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k in A(x)^(4*n) begins:
n=1: [(1), (4), 12, 152/3, 1040/3, 16256/5, 1665856/45, 152125696/315, ...];
n=2: [1, (8), (40), 592/3, 3728/3, 157376/15, 4992064/45, 86636800/63, ...];
n=3: [1, 12, (84), (504), 3264, 129408/5, 1273536/5, 104486784/35, ...];
n=4: [1, 16, 144, (3104/3), (21728/3), 283264/5, 23764096/45, 1844359168/315, ...];
n=5: [1, 20, 220, 5560/3, (42800/3), (342400/3), 9296960/9, 687731200/63, ...];
n=6: [1, 24, 312, 3024, 25680, (1073856/5), (9664704/5), 690265344/35, ...];
n=7: [1, 28, 420, 13832/3, 129248/3, 1905792/5, (156447424/45), (312894848/9), ...]; ...
in which the coefficients in parenthesis are related by
4 = 4*(1); 40 = 5*(8); 504 = 6*(84); 21728/3 = 7*(3104/3); 342400/3 = 8*(42800/3); 9664704/5 = 9*(1073856/5); ...
illustrating: [x^n] A(x)^(4*n) = (n+3) * [x^(n-1)] A(x)^(4*n).
LOGARITHMIC PROPERTY.
The logarithm of the e.g.f. is an integer power series in x satisfying
log(A(x)) = x * (1 - 3*x*A'(x)/A(x)) / (1 - 4*x*A'(x)/A(x));
explicitly,
log(A(x)) = x + x^2 + 6*x^3 + 50*x^4 + 520*x^5 + 6312*x^6 + 86080*x^7 + 1288704*x^8 + 20862720*x^9 + 361454720*x^10 + ... + A300989(n)*x^n + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n+1, A=concat(A, 0); V=Vec(Ser(A)^(4*(#A-1))); A[#A] = ((#A+2)*V[#A-1] - V[#A])/(4*(#A-1)) ); n!*polcoeff( Ser(A), n)}
for(n=0, 25, print1(a(n), ", "))
(PARI) {a(n) = my(A=1); for(i=1, n, A = exp( x*(A-3*x*A')/(A-4*x*A' +x*O(x^n)) ) ); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
Search completed in 0.015 seconds
|