[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a296170 -id:a296170
     Sort: relevance | references | number | modified | created      Format: long | short | data
G.f. A(x) satisfies: G(A(x)) = exp(x), where G(x) equals the e.g.f. of A296170.
+20
4
1, 1, 3, 19, 226, 4259, 110514, 3626207, 143043592, 6567931068, 343278693103, 20092744961109, 1300754163383700, 92223505422990050, 7104166647498916816, 590661172651143976231, 52710327177111760030280, 5024720072707894279118236, 509553454073135435969780828, 54771493019290133717304608756, 6220332385328132888848047735930, 744260531662484056612631555859467
OFFSET
1,3
COMMENTS
E.g.f. G(x) of A296170 satisfies: [x^(n-1)] G(x)^(n^2) = [x^n] G(x)^(n^2) for n>=1.
LINKS
FORMULA
G.f. is the series reversion of the logarithm of the e.g.f. of A296170.
a(n) ~ c * d^n * n! / n^3, where d = -4/(LambertW(-2*exp(-2)) * (2 + LambertW(-2*exp(-2)))) = 6.17655460948348035823168... and c = (2 + LambertW(-2*exp(-2)))^2 * sqrt(-LambertW(-2*exp(-2))*(1 + LambertW(-2*exp(-2)))) / (8*sqrt(2)*Pi) = 0.0350943105... - Vaclav Kotesovec, Dec 22 2017, updated Aug 06 2018
EXAMPLE
G.f. A(x) = x + x^2 + 3*x^3 + 19*x^4 + 226*x^5 + 4259*x^6 + 110514*x^7 + 3626207*x^8 + 143043592*x^9 + 6567931068*x^10 + 343278693103*x^11 + 20092744961109*x^12 + 1300754163383700*x^13 + 92223505422990050*x^14 + 7104166647498916816*x^15 +...
The series reversion equals the logarithm of the e.g.f. of A296170, which begins:
Series_Reversion(A(x)) = x - x^2 - x^3 - 9*x^4 - 134*x^5 - 2852*x^6 - 79096*x^7 - 2699480*x^8 - 109201844*x^9 - 5100872244*x^10 - 269903909820*x^11 - 15944040740604*x^12 - 1039553309158964*x^13 - 74123498185170292*x^14 - 5736368141560365292*x^15 +...+ A296171(n)*x^n +...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n+1, A=concat(A, 0); V=Vec(Ser(A)^((#A-1)^2)); A[#A] = (V[#A-1] - V[#A])/(#A-1)^2 ); polcoeff(serreverse(log(Ser(A))), n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 09 2017
STATUS
approved
a(n) = [x^n/n!] G(x)^((n+1)^2) / (n+1)^2 for n>=0, where G(x) is the e.g.f. of A296170.
+20
2
1, 1, 7, 154, 7609, 695856, 103805719, 23134327168, 7227250033329, 3017857024161280, 1623903877812828871, 1094152976804148581376, 902056146753714911194537, 892968703742747996041990144, 1044915082876352591016398853975, 1426374051728780629533978596663296, 2245953139539256017165567029993025889
OFFSET
0,3
COMMENTS
E.g.f. G(x) of A296170 satisfies: [x^(n-1)] G(x)^(n^2) = [x^n] G(x)^(n^2) for n>=1.
LINKS
FORMULA
a(n-1) = [x^n/n!] G(x)^(n^2) / n^2 for n>=1, where G(x) is the e.g.f. of A296170.
a(7*n) = 1 (mod 7) for n>=0.
a(7*n+2) = a(7*n+3) = a(7*n+4) = a(7*n+5) = 0 (mod 7) for n>=0.
a(n) ~ c * n^(2*n - 2), where c = 2.165959933... - Vaclav Kotesovec, Dec 20 2017
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n+1, A=concat(A, 0); V=Vec(Ser(A)^((#A-1)^2)); A[#A] = (V[#A-1] - V[#A])/(#A-1)^2 ); n!*polcoeff(Ser(A)^((n+1)^2)/((n+1)^2), n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A296170.
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 08 2017
STATUS
approved
O.g.f. A(x) satisfies: [x^n] exp( n^2 * A(x) ) = [x^(n-1)] exp( n^2 * A(x) ) for n>=1.
+10
18
1, -1, -1, -9, -134, -2852, -79096, -2699480, -109201844, -5100872244, -269903909820, -15944040740604, -1039553309158964, -74123498185170292, -5736368141560365292, -478780244956262592748, -42865943103053965559668, -4097785410628237071311764, -416572537937169684523985420, -44873737158384968851319470220, -5106038963454360810619516396820, -611986780692307637617151164361140, -77066319756799442735378541663266476
OFFSET
1,4
COMMENTS
E.g.f. G(x) of A296170 satisfies: [x^(n-1)] G(x)^(n^2) = [x^n] G(x)^(n^2) for n>=1.
LINKS
EXAMPLE
G.f. A(x) = x - x^2 - x^3 - 9*x^4 - 134*x^5 - 2852*x^6 - 79096*x^7 - 2699480*x^8 - 109201844*x^9 - 5100872244*x^10 - 269903909820*x^11 - 15944040740604*x^12 - 1039553309158964*x^13 - 74123498185170292*x^14 - 5736368141560365292*x^15 + ...
such that
G(x) = exp(A(x)) = 1 + x - x^2/2! - 11*x^3/3! - 239*x^4/4! - 17059*x^5/5! - 2145689*x^6/6! - 412595231*x^7/7! - 111962826751*x^8/8! - 40590007936199*x^9/9! - 18900753214178609*x^10/10! + ... + A296170(n)*x^n/n! + ...
satisfies [x^(n-1)] G(x)^(n^2) = [x^n] G(x)^(n^2) for n>=1.
RELATED SERIES.
Series_Reversion(A(x)) = x + x^2 + 3*x^3 + 19*x^4 + 226*x^5 + 4259*x^6 + 110514*x^7 + 3626207*x^8 + 143043592*x^9 + 6567931068*x^10 + 343278693103*x^11 + 20092744961109*x^12 + 1300754163383700*x^13 + ... + A295812(n)*x^n + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n+1, A=concat(A, 0); V=Vec(Ser(A)^((#A-1)^2)); A[#A] = (V[#A-1] - V[#A])/(#A-1)^2 ); polcoeff(log(Ser(A)), n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Dec 07 2017
STATUS
approved
E.g.f. A(x) satisfies: [x^n] A(x)^(n^2) = n^2 * [x^(n-1)] A(x)^(n^2) for n>=1.
+10
13
1, 1, 5, 175, 18385, 3759701, 1258735981, 630063839035, 445962163492385, 429694421369414185, 547875295770399220981, 903754519692129905068391, 1892423689107542226463430065, 4948056864672913520114055888445, 15922007799835205487157437619131485, 62245856465769048392433555378169339891, 292266373167286246870149657443033728860481
OFFSET
0,3
COMMENTS
Compare e.g.f. to: [x^n] exp(x)^(n^2) = n * [x^(n-1)] exp(x)^(n^2) for n>=1.
LINKS
FORMULA
E.g.f. A(x) satisfies: log(A(x)) = Sum_{n>=1} A300591(n)*x^n, a power series in x with integer coefficients.
a(n) ~ c * n!^3 * n^2, where c = 0.1354708370957778563796... - Vaclav Kotesovec, Oct 13 2020
EXAMPLE
E.g.f.: A(x) = 1 + x + 5*x^2/2! + 175*x^3/3! + 18385*x^4/4! + 3759701*x^5/5! + 1258735981*x^6/6! + 630063839035*x^7/7! + 445962163492385*x^8/8! + 429694421369414185*x^9/9! + 547875295770399220981*x^10/10! + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k in A(x)^(n^2) begins:
n=1: [(1), (1), 5/2, 175/6, 18385/24, 3759701/120, 1258735981/720, ...];
n=2: [1, (4), (16), 452/3, 10448/3, 2037388/15, 333368656/45, ...];
n=3: [1, 9, (117/2), (1053/2), 79803/8, 14107743/40, 1472857749/80, ...];
n=4: [1, 16, 160, (4880/3), (78080/3), 11770672/15, 1707161056/45, ...];
n=5: [1, 25, 725/2, 27175/6, (1642225/24), (41055625/24), ...];
n=6: [1, 36, 720, 11340, 180720, (19548324/5), (703739664/5), ...];
n=7: [1, 49, 2597/2, 154399/6, 11125009/24, (1138996229/120), (205943018701/720), ...]; ...
in which the coefficients in parenthesis are related by
1 = 1*(1); 16 = 2^2*(4); 1053/2 = 3^2*(117/2); 78080/3 = 4^2*(4880/3); 41055625/24 = 5^2*(1642225/24); ...
illustrating that: [x^n] A(x)^(n^2) = n^2 * [x^(n-1)] A(x)^(n^2).
LOGARITHMIC PROPERTY.
The logarithm of the e.g.f. is the integer series:
log(A(x)) = x + 2*x^2 + 27*x^3 + 736*x^4 + 30525*x^5 + 1715454*x^6 + 123198985*x^7 + 10931897664*x^8 + 1172808994833*x^9 + 149774206572050*x^10 + ... + A300591(n)*x^n + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n+1, A=concat(A, 0); V=Vec(Ser(A)^((#A-1)^2)); A[#A] = ((#A-1)^2*V[#A-1] - V[#A])/(#A-1)^2 ); n!*A[n+1]}
for(n=0, 30, print1(a(n), ", "))
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 09 2018
STATUS
approved
E.g.f. A(x) satisfies: [x^n] A(x)^(n^2) = n^3 * [x^(n-1)] A(x)^(n^2) for n>=1.
+10
8
1, 1, 13, 1333, 438073, 328561681, 482408372341, 1262989939509733, 5507311107090685873, 37883505322347710775553, 393149949374099099160049501, 5930998808712507352448964186421, 126060064477829234977371818938653673, 3675839897921109642941288187056728970833, 143727814785299582494066294788162327508528453
OFFSET
0,3
COMMENTS
Compare e.g.f. to: [x^n] exp(x)^(n^2) = n * [x^(n-1)] exp(x)^(n^2) for n>=1.
LINKS
FORMULA
E.g.f. A(x) satisfies: log(A(x)) = Sum_{n>=1} A300593(n)*x^n, a power series in x with integer coefficients.
a(n) ~ c * n!^4, where c = 3.1056678107899395562612789210816... - Vaclav Kotesovec, Oct 14 2020
EXAMPLE
E.g.f.: A(x) = 1 + x + 13*x^2/2! + 1333*x^3/3! + 438073*x^4/4! + 328561681*x^5/5! + 482408372341*x^6/6! + 1262989939509733*x^7/7! + 5507311107090685873*x^8/8! + 37883505322347710775553*x^9/9! + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k in A(x)^(n^2) begins:
n=1: [(1), (1), 13/2, 1333/6, 438073/24, 328561681/120, ...];
n=2: [1, (4), (32), 2912/3, 228032/3, 167874308/15, ...];
n=3: [1, 9, (189/2), (5103/2), 1468467/8, 1045214163/40, ...];
n=4: [1, 16, 224, (17024/3), (1089536/3), 735471632/15, ...];
n=5: [1, 25, 925/2, 70525/6, (15835225/24), (1979403125/24), ...];
n=6: [1, 36, 864, 23328, 1161792, (654796044/5), (141435945504/5), ...]; ...
in which the coefficients in parenthesis are related by
1 = 1*1; 32 = 2^3*4; 5103/2 = 3^3*189/2; 1089536/3 = 4^3*17024/3; ...
illustrating that: [x^n] A(x)^(n^2) = n^3 * [x^(n-1)] A(x)^(n^2).
LOGARITHMIC PROPERTY.
The logarithm of the e.g.f. is the integer series:
log(A(x)) = x + 6*x^2 + 216*x^3 + 18016*x^4 + 2718575*x^5 + 667151244*x^6 + 249904389518*x^7 + 136335045655680*x^8 + 104258627494173747*x^9 + 108236370325030253850*x^10 + 148475074256982964816314*x^11 + 263023328027145941803648512*x^12 + ... + A300593(n)*x^n + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n+1, A=concat(A, 0); V=Vec(Ser(A)^((#A-1)^2)); A[#A] = ((#A-1)^3*V[#A-1] - V[#A])/(#A-1)^2 ); n!*A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 09 2018
STATUS
approved
E.g.f. A(x) satisfies: [x^n] A(x)^(n^3) = n^3 * [x^(n-1)] A(x)^(n^3) for n>=1.
+10
8
1, 1, 9, 1483, 976825, 1507281021, 4409747597401, 21744850191313999, 167557834535988306033, 1913194223179191462419065, 31110747474489521617502800201, 698529144858380953105954686101811, 21123268203104470199318422678044241129, 842759726425517953579189712209822358428213, 43599233739340643789919321494623289001407934105
OFFSET
0,3
COMMENTS
Compare e.g.f. to: [x^n] exp(x)^(n^3) = n^2 * [x^(n-1)] exp(x)^(n^3) for n>=1.
LINKS
FORMULA
E.g.f. A(x) satisfies: log(A(x)) = Sum_{n>=1} A300595(n)*x^n, a power series in x with integer coefficients.
a(n) ~ c * n!^4 * n^3, where c = 0.40774346023... - Vaclav Kotesovec, Oct 14 2020
EXAMPLE
E.g.f.: A(x) = 1 + x + 9*x^2/2! + 1483*x^3/3! + 976825*x^4/4! + 1507281021*x^5/5! + 4409747597401*x^6/6! + 21744850191313999*x^7/7! + 167557834535988306033*x^8/8! + 1913194223179191462419065*x^9/9! + 31110747474489521617502800201*x^10/10! + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k in A(x)^(n^3) begins:
n=1: [(1), (1), 9/2, 1483/6, 976825/24, 502427007/40, 4409747597401/720]
n=2: [1, (8), (64), 6856/3, 1022528/3, 1543097816/15, 2237393526784/45]
n=3: [1, 27, (945/2), (25515/2), 10692675/8, 14849374869/40, 1397853444500
n=4: [1, 64, 2304, (226880/3), (14520320/3), 5124803136/5, 20241220116736/
n=5: [1, 125, 16625/2, 2510375/6, (553359625/24), (69169953125/24), ...];
n=6: [1, 216, 24192, 1918728, 131302080, (56555402904/5), (12215967027264/5), ...]; ...
in which the coefficients in parenthesis are related by
1 = 1*1; 64 = 2^3*8; 25515/2 = 3^3*945/2; 14520320/3 = 4^3*226880/3; ...
illustrating that: [x^n] A(x)^(n^3) = n^3 * [x^(n-1)] A(x)^(n^3).
LOGARITHMIC PROPERTY.
The logarithm of the e.g.f. is the integer series:
log(A(x)) = x + 4*x^2 + 243*x^3 + 40448*x^4 + 12519125*x^5 + 6111917748*x^6 + 4308276119854*x^7 + 4151360558858752*x^8 + 5268077625693186225*x^9 + 8567999843251994553500*x^10 + ... + A300595(n)*x^n + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n+1, A=concat(A, 0); V=Vec(Ser(A)^((#A-1)^3)); A[#A] = ((#A-1)^3*V[#A-1] - V[#A])/(#A-1)^3 ); EGF=Ser(A); n!*A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 09 2018
STATUS
approved
E.g.f. A(x) satisfies: [x^n] A(x)^(2*n) = (n+1) * [x^(n-1)] A(x)^(2*n) for n>=1.
+10
8
1, 1, 3, 31, 697, 25761, 1371691, 97677343, 8869533681, 993709302337, 134086553693011, 21392941696576671, 3977310371182762153, 851537642070562468321, 207892899850805427254907, 57394298500033495294907551, 17789220343418322663802383841, 6151146653207427022767433596033, 2359535664677835451305256629862051, 999033160522078788619730346474821407
OFFSET
0,3
COMMENTS
Compare e.g.f. to: [x^n] exp(x)^(2*n) = 2 * [x^(n-1)] exp(x)^(2*n) for n>=1.
LINKS
FORMULA
E.g.f. A(x) satisfies: A(x) = exp( x * (A(x) - x*A'(x)) / (A(x) - 2*x*A'(x)) ).
a(n) ~ c * n!^2 * n^3, where c = 0.008789136598... - Vaclav Kotesovec, Oct 24 2020
EXAMPLE
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 31*x^3/3! + 697*x^4/4! + 25761*x^5/5! + 1371691*x^6/6! + 97677343*x^7/7! + 8869533681*x^8/8! + 993709302337*x^9/9! + 134086553693011*x^10/10! + ...
such that [x^n] A(x)^(2*n) = (n+1) * [x^(n-1)] A(x)^(2*n) for n>=1.
RELATED SERIES.
A(x)^2 = 1 + 2*x + 8*x^2/2! + 80*x^3/3! + 1696*x^4/4! + 60352*x^5/5! + 3134464*x^6/6! + 219316736*x^7/7! + 19655797760*x^8/8! + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k in A(x)^(2*n) begin:
n=1: [(1), (2), 4, 40/3, 212/3, 7544/15, 195904/45, 13707296/315, ...];
n=2: [1, (4), (12), 128/3, 632/3, 6976/5, 515776/45, 34760896/315, ...];
n=3: [1, 6, (24), (96), 468, 14664/5, 114384/5, 7407552/35, ...];
n=4: [1, 8, 40, (544/3), (2720/3), 82496/15, 1843264/45, 22923136/63, ...];
n=5: [1, 10, 60, 920/3, (4820/3), (9640), 622880/9, 37242080/63, ...];
n=6: [1, 12, 84, 480, 2664, (80448/5), (563136/5), 32495424/35, ...];
n=7: [1, 14, 112, 2128/3, 12572/3, 387128/15, (8018416/45), (64147328/45), ...]; ...
in which the coefficients in parenthesis are related by
2 = 2*(1); 12 = 3*(4); 96 = 4*(24); 2720/3 = 5*(544/3); 9640 = 6*(4820/3); 563136/5 = 7*(80448/5); 64147328/45 = 8*(8018416/45); ...
illustrating that: [x^n] A(x)^(2*n) = (n+1) * [x^(n-1)] A(x)^(2*n).
LOGARITHMIC PROPERTY.
The logarithm of the e.g.f. is an integer power series in x satisfying
log(A(x)) = x * (1 - x*A'(x)/A(x)) / (1 - 2*x*A'(x)/A(x));
explicitly,
log(A(x)) = x + x^2 + 4*x^3 + 24*x^4 + 184*x^5 + 1672*x^6 + 17296*x^7 + 198800*x^8 + 2499200*x^9 + 33992000*x^10 + 496281344*x^11 + 7731823616*x^12 + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n+1, A=concat(A, 0); V=Vec(Ser(A)^(2*(#A-1))); A[#A] = ((#A)*V[#A-1] - V[#A])/(2*(#A-1)) ); n!*polcoeff( Ser(A), n)}
for(n=0, 20, print1(a(n), ", "))
(PARI) {a(n) = my(A=1); for(i=1, n, A = exp( x*(A-x*A')/(A-2*x*A' +x*O(x^n)) ) ); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 17 2018
STATUS
approved
E.g.f. A(x) satisfies: [x^n] A(x)^(3*n) = (n + 2) * [x^(n-1)] A(x)^(3*n) for n>=1.
+10
8
1, 1, 3, 37, 1009, 44541, 2799931, 233188033, 24562692897, 3168510747769, 488856473079571, 88597562768075901, 18595324838343722833, 4468203984338696710837, 1217521669261709053889739, 373205252376454629490607641, 127806482596653000272128733761, 48605321514711360780713536416753, 20419150659462692416601828820774307, 9431006202634362924849710001022454869
OFFSET
0,3
COMMENTS
Compare to: [x^n] exp(x)^(3*n) = 3 * [x^(n-1)] exp(x)^(3*n) for n>=1.
LINKS
FORMULA
E.g.f. A(x) satisfies: A(x) = exp( x * (A(x) - 2*x*A'(x)) / (A(x) - 3*x*A'(x)) ).
a(n) ~ c * (n!)^2 * n^5, where c = 0.0001464056080437... - Vaclav Kotesovec, Mar 20 2018
EXAMPLE
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 37*x^3/3! + 1009*x^4/4! + 44541*x^5/5! + 2799931*x^6/6! + 233188033*x^7/7! + 24562692897*x^8/8! + 3168510747769*x^9/9! + 488856473079571*x^10/10! + ...
such that [x^n] A(x)^(3*n) = (n+2) * [x^(n-1)] A(x)^(3*n) for n>=1.
RELATED SERIES.
A(x)^3 = 1 + 3*x + 15*x^2/2! + 171*x^3/3! + 4185*x^4/4! + 173583*x^5/5! + 10491039*x^6/6! + 850141575*x^7/7! + 87745941873*x^8/8! + 11141030530395*x^9/9! + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients in A(x)^(3*n) begins:
n=1: [(1), (3), 15/2, 57/2, 1395/8, 57861/40, 1165671/80, 18892035/112, ...];
n=2: [1, (6), (24), 102, 576, 21834/5, 206244/5, 15974712/35, ...];
n=3: [1, 9, (99/2), (495/2), 11259/8, 401463/40, 7120899/80, 525246849/560, ...];
n=4: [1, 12, 84, (492), (2952), 102708/5, 864756/5, 60722784/35, ...];
n=5: [1, 15, 255/2, 1725/2, (44595/8), (312165/8), 5077035/16, 340795215/112, ...];
n=6: [1, 18, 180, 1386, 9720, (349542/5), (2796336/5), 36178488/7, ...];
n=7: [1, 21, 483/2, 4179/2, 127323/8, 4767147/40, (76271139/80), (686440251/80), ...]; ...
in which the coefficients in parenthesis are related by
3 = 3*(1); 24 = 4*(6); 495/2 = 5*(99/2); 2952 = 6*(492); 312165/8 = 7*(44595/8); 2796336/5 = 8*(349542/5); 686440251/80 = 9*(76271139/80); ...
illustrating that: [x^n] A(x)^(3*n) = (n+2) * [x^(n-1)] A(x)^(3*n).
LOGARITHMIC PROPERTY.
The logarithm of the e.g.f. is an integer power series in x satisfying
log(A(x)) = x * (1 - 2*x*A'(x)/A(x)) / (1 - 3*x*A'(x)/A(x));
explicitly,
log(A(x)) = x + x^2 + 5*x^3 + 36*x^4 + 327*x^5 + 3489*x^6 + 42048*x^7 + 559008*x^8 + 8073243*x^9 + 125328411*x^10 + 2075525505*x^11 + 36460943208*x^12 + ... + A300987(n)*x^n + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n+1, A=concat(A, 0); V=Vec(Ser(A)^(3*(#A-1))); A[#A] = ((#A+1)*V[#A-1] - V[#A])/(3*(#A-1)) ); n!*polcoeff( Ser(A), n)}
for(n=0, 25, print1(a(n), ", "))
(PARI) {a(n) = my(A=1); for(i=1, n, A = exp( x*(A-2*x*A')/(A-3*x*A' +x*O(x^n)) ) ); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 17 2018
STATUS
approved
E.g.f. A(x) satisfies: [x^n] A(x)^(n*(n+1)) = n*(n+1) * [x^(n-1)] A(x)^(n*(n+1)) for n>=1.
+10
7
1, 1, 7, 307, 37537, 8755561, 3304572391, 1847063377867, 1447456397632897, 1532041772833285777, 2130468278450240803591, 3808068399270998260188451, 8590473242021318921848038817, 24074336129439663228349612217977, 82657249526888437632759608331784807, 343425012928825298349935150449843384891, 1707701025594135213863151839769061397729281
OFFSET
0,3
COMMENTS
Compare e.g.f. to: [x^n] exp(x)^(n*(n+1)) = (n+1) * [x^(n-1)] exp(x)^(n*(n+1)) for n>=1.
LINKS
FORMULA
a(n) ~ c * n!^3 * n^3, where c = 0.044039511494832369374... - Vaclav Kotesovec, Oct 14 2020
EXAMPLE
E.g.f.: A(x) = 1 + x + 7*x^2/2! + 307*x^3/3! + 37537*x^4/4! + 8755561*x^5/5! + 3304572391*x^6/6! + 1847063377867*x^7/7! + 1447456397632897*x^8/8! + 1532041772833285777*x^9/9! + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k in A(x)^(n*(n+1)) begins:
n=1: [(1), (2), 8, 328/3, 9728/3, 2241184/15, 420248704/45, ...];
n=2: [1, (6), (36), 432, 11328, 2470464/5, 150254784/5, ...];
n=3: [1, 12, (108), (1296), 29136, 5776128/5, 335166336/5, ...];
n=4: [1, 20, 260, (10480/3), (209600/3), 7265600/3, 1173400640/9, ...];
n=5: [1, 30, 540, 8640, (166800), (5004000), 241367040, 116509893120/7...];
n=6: [1, 42, 1008, 19656, 396816, (53339328/5), (2240251776/5), ...];
n=7: [1, 56, 1736, 124096/3, 2767184/3, 355355392/15, (38932329856/45), (2180210471936/45), ...]; ...
in which the coefficients in parenthesis are related by
2 = 1*2*(1); 36 = 2*3*(6); 1296 = 3*4*(108); 209600/3 = 4*5*(10480/3); 5004000 = 5*6*(166800); 2240251776/5 = 6*7*(53339328/5); ...
illustrating that: [x^n] A(x)^(n*(n+1)) = n*(n+1) * [x^(n-1)] A(x)^(n*(n+1)).
LOGARITHMIC PROPERTY.
The logarithm of the e.g.f. is the integer series:
log(A(x)) = x + 3*x^2 + 48*x^3 + 1510*x^4 + 71280*x^5 + 4511808*x^6 + 361640832*x^7 + 35516910960*x^8 + 4184770003200*x^9 + ... + A300871(n)*x^n + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n+1, A=concat(A, 0); V=Vec(Ser(A)^((#A-1)*(#A))); A[#A] = ((#A-1)*(#A)*V[#A-1] - V[#A])/(#A-1)/(#A) ); EGF=Ser(A); n!*A[n+1]}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 14 2018
STATUS
approved
E.g.f. A(x) satisfies: [x^n] A(x)^(4*n) = (n + 3) * [x^(n-1)] A(x)^(4*n) for n>=1.
+10
7
1, 1, 3, 43, 1369, 69561, 4991371, 471516403, 56029153713, 8112993527089, 1398528216254611, 281935928284459131, 65543089930613822473, 17373185629100099938153, 5201713100466658289659419, 1745470558150260528082445251, 652016607740826946854349450081, 269558306371535265856134699842913, 122707064351998882900943162086492963, 61225312946191234549695844364141862859
OFFSET
0,3
COMMENTS
Compare to: [x^n] exp(x)^(4*n) = 4 * [x^(n-1)] exp(x)^(4*n) for n>=1.
LINKS
FORMULA
E.g.f. A(x) satisfies: A(x) = exp( x * (A(x) - 3*x*A'(x)) / (A(x) - 4*x*A'(x)) ).
EXAMPLE
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 43*x^3/3! + 1369*x^4/4! + 69561*x^5/5! + 4991371*x^6/6! + 471516403*x^7/7! + 56029153713*x^8/8! + 8112993527089*x^9/9! + ...
such that [x^n] A(x)^(4*n) = (n+3) * [x^(n-1)] A(x)^(4*n) for n>=1.
RELATED SERIES.
A(x)^4 = 1 + 4*x + 24*x^2/2! + 304*x^3/3! + 8320*x^4/4! + 390144*x^5/5! + 26653696*x^6/6! + 2434011136*x^7/7! + 282056564736*x^8/8! + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k in A(x)^(4*n) begins:
n=1: [(1), (4), 12, 152/3, 1040/3, 16256/5, 1665856/45, 152125696/315, ...];
n=2: [1, (8), (40), 592/3, 3728/3, 157376/15, 4992064/45, 86636800/63, ...];
n=3: [1, 12, (84), (504), 3264, 129408/5, 1273536/5, 104486784/35, ...];
n=4: [1, 16, 144, (3104/3), (21728/3), 283264/5, 23764096/45, 1844359168/315, ...];
n=5: [1, 20, 220, 5560/3, (42800/3), (342400/3), 9296960/9, 687731200/63, ...];
n=6: [1, 24, 312, 3024, 25680, (1073856/5), (9664704/5), 690265344/35, ...];
n=7: [1, 28, 420, 13832/3, 129248/3, 1905792/5, (156447424/45), (312894848/9), ...]; ...
in which the coefficients in parenthesis are related by
4 = 4*(1); 40 = 5*(8); 504 = 6*(84); 21728/3 = 7*(3104/3); 342400/3 = 8*(42800/3); 9664704/5 = 9*(1073856/5); ...
illustrating: [x^n] A(x)^(4*n) = (n+3) * [x^(n-1)] A(x)^(4*n).
LOGARITHMIC PROPERTY.
The logarithm of the e.g.f. is an integer power series in x satisfying
log(A(x)) = x * (1 - 3*x*A'(x)/A(x)) / (1 - 4*x*A'(x)/A(x));
explicitly,
log(A(x)) = x + x^2 + 6*x^3 + 50*x^4 + 520*x^5 + 6312*x^6 + 86080*x^7 + 1288704*x^8 + 20862720*x^9 + 361454720*x^10 + ... + A300989(n)*x^n + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n+1, A=concat(A, 0); V=Vec(Ser(A)^(4*(#A-1))); A[#A] = ((#A+2)*V[#A-1] - V[#A])/(4*(#A-1)) ); n!*polcoeff( Ser(A), n)}
for(n=0, 25, print1(a(n), ", "))
(PARI) {a(n) = my(A=1); for(i=1, n, A = exp( x*(A-3*x*A')/(A-4*x*A' +x*O(x^n)) ) ); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 17 2018
STATUS
approved

Search completed in 0.015 seconds