[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A296174
E.g.f. A(x) satisfies: [x^(n-1)] A(x)^(n^4) = [x^n] A(x)^(n^4) for n>=1.
6
1, 1, -13, -2999, -8197751, -81738176899, -2105524335759389, -115916378979693710123, -12069952631345502122877199, -2179911119857340269414590758951, -639738016495616440994202167765715629, -289812262583683385183617291938537580840159, -194420626455357631368336026954933981532680935943, -186615832949734453391125561079799823405868770406129579
OFFSET
0,3
COMMENTS
Compare e.g.f. to: [x^(n-1)] exp(x)^n = [x^n] exp(x)^n for n>=1.
LINKS
FORMULA
The logarithm of the e.g.f. A(x) is an integer series:
_ log(A(x)) = Sum_{n>=1} A296175(n) * x^n.
E.g.f. A(x) satisfies:
_ 1/n! * d^n/dx^n A(x)^(n^4) = 1/(n-1)! * d^(n-1)/dx^(n-1) A(x)^(n^4) for n>=1, when evaluated at x = 0.
a(n) ~ -sqrt(1-c) * 2^(8*n - 8) * n^(4*n - 4) / (c^n * (4-c)^(3*n - 4) * exp(4*n)), where c = -LambertW(-4*exp(-4)) = 0.079309605127113656439108647386463779474372... - Vaclav Kotesovec, Oct 13 2020
EXAMPLE
E.g.f.: A(x) = 1 + x - 13*x^2/2! - 2999*x^3/3! - 8197751*x^4/4! - 81738176899*x^5/5! - 2105524335759389*x^6/6! - 115916378979693710123*x^7/7! - 12069952631345502122877199*x^8/8! - 2179911119857340269414590758951*x^9/9! - 639738016495616440994202167765715629*x^10/10! +...
To illustrate [x^(n-1)] A(x)^(n^4) = [x^n] A(x)^(n^4), form a table of coefficients of x^k in A(x)^(n^4) that begins as
n=1: [(1), (1), -13/2, -2999/6, -8197751/24, -81738176899/120, ...];
n=2: [1, (16), (16), -26992/3, -16767472/3, -164706495728/15, ...];
n=3: [1, 81, (5427/2), (5427/2), -246155517/8, -2300014714833/40, ...];
n=4: [1, 256, 30976, (6633728/3), (6633728/3), -2939838787328/15, ...];
n=5: [1, 625, 381875/2, 225885625/6, (122571375625/24), (122571375625/24), ...];
n=6: [1, 1296, 830736, 350400816, 108698540976, (126219948303024/5), (126219948303024/5), ...];
...
in which the diagonals indicated by parenthesis are equal.
Dividing the coefficients of x^(n-1)/(n-1)! in A(x)^(n^4) by n^4, we obtain the following sequence:
[1, 1, 67, 51826, 196114201, 2337406450056, 68145136372652611, 4136219111307043556272, 467591060765602023501093201, ...].
LOGARITHMIC PROPERTY.
Amazingly, the logarithm of the e.g.f. A(x) is an integer series:
log(A(x)) = x - 7*x^2 - 493*x^3 - 341101*x^4 - 680813601*x^5 - 2923660883625*x^6 - 22996362478599551*x^7 - 299331006952284448127*x^8 - 6006951481145880962408552*x^9 - 176288642409787912257773903552*x^10 - 7260231964238768891891716773249396*x^11 - 405879958110794676900559524931590299892*x^12 +...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n+1, A=concat(A, 0); V=Vec(Ser(A)^((#A-1)^4)); A[#A] = (V[#A-1] - V[#A])/(#A-1)^4 ); n!*A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Dec 07 2017
STATUS
approved