[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A295814
G.f. A(x) satisfies: G(A(x)) = exp(x), where G(x) equals the e.g.f. of A296174.
3
1, 7, 591, 360071, 696409901, 2958728428011, 23164541753169117, 300801581861406441263, 6028093825088113213286946, 176753891171734450100762135773, 7275100380834838623971362431809230, 406542590169784279153263825042856310627, 30008177367626616771665421796780382440931316, 2859139755874441545650368872575815286528870509597
OFFSET
1,2
COMMENTS
E.g.f. G(x) of A296174 satisfies: [x^(n-1)] G(x)^(n^4) = [x^n] G(x)^(n^4) for n>=1.
LINKS
FORMULA
G.f. is the series reversion of the logarithm of the e.g.f. of A296174.
a(n) ~ sqrt(1-c) * 2^(8*n - 17/2) * n^(3*n - 9/2) / (sqrt(Pi) * c^n * (4-c)^(3*n - 4) * exp(3*n)), where c = -LambertW(-4*exp(-4)) = 0.07930960512711365643910864... - Vaclav Kotesovec, Dec 22 2017, updated Oct 13 2020
EXAMPLE
G.f. A(x) = x + 7*x^2 + 591*x^3 + 360071*x^4 + 696409901*x^5 + 2958728428011*x^6 + 23164541753169117*x^7 + 300801581861406441263*x^8 +...
Series_Reversion(A(x)) = x - 7*x^2 - 493*x^3 - 341101*x^4 - 680813601*x^5 - 2923660883625*x^6 - 22996362478599551*x^7 - 299331006952284448127*x^8 - 6006951481145880962408552*x^9 +...+ A296175(n)*x^n +...
G(x) = exp(Series_Reversion(A(x))) = 1 + x - 13*x^2/2! - 2999*x^3/3! - 8197751*x^4/4! - 81738176899*x^5/5! - 2105524335759389*x^6/6! - 115916378979693710123*x^7/7! - 12069952631345502122877199*x^8/8! - 2179911119857340269414590758951*x^9/9! +...+ A296174(n)*x^n/n! +...
which satisfies [x^(n-1)] G(x)^(n^4) = [x^n] G(x)^(n^4) for n>=1.
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n+1, A=concat(A, 0); V=Vec(Ser(A)^((#A-1)^4)); A[#A] = (V[#A-1] - V[#A])/(#A-1)^4 ); polcoeff(serreverse(log(Ser(A))), n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 09 2017
STATUS
approved