[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322899
a(n) = T_{2*n}(n+1) where T_{n}(x) is a Chebyshev polynomial of the first kind.
2
1, 7, 577, 119071, 46099201, 28860511751, 26650854921601, 34100354867927167, 57780789062419261441, 125283240358674708816199, 338393251269110482793304001, 1114259437504123772777608493087, 4394174409561746573589926449440001
OFFSET
0,2
FORMULA
a(n) = T_{n}(2*n^2+4*n+1).
a(n) = Sum_{k=0..n} binomial(2*n,2*k)*(n^2+2*n)^(n-k)*(n+1)^(2*k).
a(n) ~ exp(2) * 2^(2*n-1) * n^(2*n). - Vaclav Kotesovec, Apr 15 2020
MATHEMATICA
a[n_] := ChebyshevT[2n, n+1];
Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Jan 02 2019 *)
PROG
(PARI) {a(n) = polchebyshev(2*n, 1, n+1)}
(PARI) {a(n) = sum(k=0, n, binomial(2*n, 2*k)*(n^2+2*n)^(n-k)*(n+1)^(2*k))}
CROSSREFS
Diagonal of A188644.
Sequence in context: A068616 A080810 A153405 * A203680 A261532 A295814
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Dec 30 2018
STATUS
approved