[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of dispersed Dyck prefixes of length 2n and height n.
3

%I #10 Dec 21 2020 07:16:37

%S 1,2,5,12,36,90,286,728,2380,6120,20349,52668,177100,460460,1560780,

%T 4071600,13884156,36312408,124403620,326023280,1121099408,2942885946,

%U 10150595910,26681566392,92263734836,242799302200,841392966470,2216352204360,7694644696200

%N Number of dispersed Dyck prefixes of length 2n and height n.

%H Alois P. Heinz, <a href="/A283799/b283799.txt">Table of n, a(n) for n = 0..1000</a>

%F Recursion: see Maple program.

%F a(n) = A282869(2n,n).

%F From _Vaclav Kotesovec_, Mar 26 2018: (Start)

%F Recurrence: 3*n*(3*n + 1)*(3*n + 2)*(3*n^3 - 11*n^2 + 10*n - 3)*a(n) = - 24*(2*n - 1)*(6*n^3 - 1)*a(n-1) + 64*(n-1)*(2*n - 3)*(2*n - 1)*(3*n^3 - 2*n^2 - 3*n - 1)*a(n-2).

%F a(n) ~ ((3+2*sqrt(3)) - (-1)^n*(3-2*sqrt(3))) * 2^(4*n + 1) / (sqrt(Pi*n) * 3^(3*n/2 + 2)). (End)

%p a:= proc(n) option remember; `if`(n<3, 1+n^2, ((512*(2*n-5))

%p *(2519*n-1279)*(n-2)*(2*n-3)*a(n-3) +(192*(2*n-3))

%p *(1710*n^3-443*n^2-4990*n+2483)*a(n-2) -(24*(22671*n^4

%p -124866*n^3+216436*n^2-129032*n+24526))*a(n-1))

%p / ((3*n+2)*(27*n+9)*(855*n-1504)*n))

%p end:

%p seq(a(n), n=0..30);

%t b[x_, y_, m_] := b[x, y, m] = If[x == 0, z^m, If[y > 0, b[x - 1, y - 1, m], 0] + If[y == 0, b[x - 1, y, m], 0] + b[x - 1, y + 1, Max[m, y + 1]]];

%t a[n_] := Coefficient[b[2n, 0, 0], z, n];

%t a /@ Range[0, 30] (* _Jean-François Alcover_, Dec 21 2020, after _Alois P. Heinz_ in A282869 *)

%Y Cf. A282869, A283667.

%K nonn

%O 0,2

%A _Alois P. Heinz_, Mar 16 2017