[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A278113
Triangle T(n,k) = A278112(n,A000040(k)) for 1 <= k <= A278114(n), read by rows.
4
1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 5, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 5, 4, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 6, 5, 4, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
OFFSET
1,2
COMMENTS
This triangle consists of those columns of A278112 that have prime index.
LINKS
Jason Kimberley, Table of n, a(n) for n = 1..10126 (rows 1..46)
FORMULA
T(n,k) = floor(n*sqrt(2/prime(k))).
T(n,k) sqrt(A000040(k)) <= n sqrt(2) < (T(n,k)+1) sqrt(A000040(k)).
EXAMPLE
The first eight rows are:
1;
2, 1, 1, 1;
3, 2, 1, 1, 1, 1, 1;
4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1;
5, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
6, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
7, 5, 4, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
8, 6, 5, 4, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
MATHEMATICA
Table[Floor[n Sqrt[2/Prime@ k]], {n, 8}, {k, PrimePi[2 n^2]}] // Flatten (* Michael De Vlieger, Feb 17 2017 *)
PROG
(Magma)
A278112:=func<n, k|Isqrt(2*n^2 div k)>;
A278113_row:=func<n|[A278112(n, p):p in PrimesUpTo(2*n^2)]>;
&cat[A278113_row(n):n in[1..8]];
CROSSREFS
KEYWORD
nonn,tabf,easy
AUTHOR
Jason Kimberley, Feb 09 2017
STATUS
approved