[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A278116
a(n) is the largest j such that A278115(n,k) strictly decreases for k=1..j.
4
1, 2, 3, 3, 4, 3, 2, 2, 5, 4, 4, 2, 2, 3, 3, 5, 3, 2, 2, 4, 3, 3, 2, 2, 3, 4, 6, 6, 2, 3, 4, 3, 3, 2, 2, 3, 5, 4, 4, 2, 4, 3, 4, 3, 2, 2, 3, 4, 3, 2, 2, 4, 3, 4, 3, 2, 2, 3, 4, 3, 2, 2, 3, 3, 5, 3, 2, 2, 4, 5, 4, 2, 2, 3, 3, 4, 3, 2, 3, 4, 7, 5, 2, 2, 3, 4, 2, 2, 2, 3, 5, 5, 5, 2, 2, 3, 4, 3, 2, 2, 4, 5, 3, 3, 2
OFFSET
1,2
LINKS
MATHEMATICA
Map[1 + Length@ TakeWhile[Differences@ #, # < 0 &] &, #] &@ Table[# Floor[n Sqrt[2/#]]^2 &@ Prime@ k, {n, 105}, {k, PrimePi[2 n^2]}] (* Michael De Vlieger, Feb 17 2017 *)
PROG
(Magma)
A:=func<n, k|Isqrt(2*n^2 div k)^2*k>;
A278116:=func<n|(exists(j){j:j in[1..#P-1]|A(n, P[j])le A278115(n, P[j+1])}
select j else #P) where P is PrimesUpTo(2*n^2)>;
[A278116(n):n in[1..103]];
(Python)
def isqrt(n):
if n < 0:
raise ValueError('imaginary')
if n == 0:
return 0
a, b = divmod(n.bit_length(), 2)
x = 2**(a+b)
while True:
y = (x + n//x)//2
if y >= x:
return x
x = y;
def next_prime(n):
for p in range(n+1, 2*n+1):
for i in range(2, isqrt(n)+1):
if p % i == 0:
break
else:
return p
return None
def A278116(n):
k = 0
p = 2
s2= (n**2)*p
s = s2
while True:
s_= s
k+= 1
p = next_prime(p)
s = (isqrt(s2//p)**2)*p
if s > s_:
break
return k
CROSSREFS
Cf. A278102.
This is the row length sequence for triangles A278117 and A278118.
A278119 lists first occurrences in this sequence.
Sequence in context: A214738 A353360 A098007 * A352420 A215469 A007554
KEYWORD
nonn,easy
AUTHOR
Jason Kimberley, Feb 12 2017
STATUS
approved