[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A260442
Sequence A260443 sorted into ascending order.
8
1, 2, 3, 5, 6, 7, 11, 13, 15, 17, 18, 19, 23, 29, 30, 31, 35, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 75, 77, 79, 83, 89, 90, 97, 101, 103, 105, 107, 109, 113, 127, 131, 137, 139, 143, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 210, 211, 221, 223, 227, 229, 233, 239, 241, 245, 251, 257, 263, 269, 270, 271, 277, 281, 283, 293, 307, 311
OFFSET
0,2
COMMENTS
Each term is a prime factorization encoding of one of the Stern polynomials. See A260443 for details.
Numbers n for which A260443(A048675(n)) = n. - Antti Karttunen, Oct 14 2016
LINKS
PROG
(PARI)
allocatemem(2^30);
A048675(n) = my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; \\ Michel Marcus, Oct 10 2016
A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From Michel Marcus
A260443(n) = if(n<2, n+1, if(n%2, A260443(n\2)*A260443(n\2+1), A003961(A260443(n\2))));
isA260442(n) = (A260443(A048675(n)) == n); \\ The most naive version.
A055396(n) = if(n==1, 0, primepi(factor(n)[1, 1])) \\ Charles R Greathouse IV, Apr 23 2015
A061395(n) = if(1==n, 0, primepi(vecmax(factor(n)[, 1]))); \\ After M. F. Hasler's code for A006530.
isA260442(n) = ((1==n) || isprime(n) || ((omega(n) == 1+(A061395(n)-A055396(n))) && (A260443(A048675(n)) == n))); \\ Somewhat optimized.
i=0; n=0; while(i < 10001, n++; if(isA260442(n), write("b260442.txt", i, " ", n); i++));
\\ Antti Karttunen, Oct 14 2016
(Scheme, with Antti Karttunen's IntSeq-library)
(define A260442 (FIXED-POINTS 0 1 (COMPOSE A260443 A048675)))
;; An optimized version:
(define A260442 (MATCHING-POS 0 1 (lambda (n) (or (= 1 n) (= 1 (A010051 n)) (and (not (< (A001221 n) (+ 1 (A243055 n)))) (= n (A260443 (A048675 n))))))))
-- Antti Karttunen, Oct 14 2016
(Python)
from sympy import factorint, prime, primepi
from operator import mul
from functools import reduce
def a048675(n):
F=factorint(n)
return 0 if n==1 else sum([F[i]*2**(primepi(i) - 1) for i in F])
def a003961(n):
F=factorint(n)
return 1 if n==1 else reduce(mul, [prime(primepi(i) + 1)**F[i] for i in F])
def a(n): return n + 1 if n<2 else a003961(a(n//2)) if n%2==0 else a((n - 1)//2)*a((n + 1)//2)
print([n for n in range(301) if a(a048675(n))==n]) # Indranil Ghosh, Jun 21 2017
CROSSREFS
Subsequence of A073491.
From 2 onward the positions of nonzeros in A277333.
Various subsequences: A000040, A002110, A070826, A277317, A277200 (even terms). Also all terms of A277318 are included here.
Cf. also A277323, A277324 and permutation pair A277415 & A277416.
Sequence in context: A053329 A308420 A363462 * A359397 A098962 A073485
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jul 29 2015
STATUS
approved