[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258580
Least positive integer k such that (prime(j*n)+prime(k*n))/2 = prime(i*n)^2 for some integers i > 0 and 0 < j < k.
1
3, 9, 4, 127, 98, 133, 55, 78, 65, 85, 375, 109, 251, 283, 105, 462, 681, 149, 156, 213, 525, 209, 205, 381, 757, 313, 252, 615, 61, 737, 478, 1754, 406, 1197, 131, 420, 492, 503, 127, 119, 549, 1748, 95, 442, 2740, 555, 677, 1258, 163, 816, 1649, 710, 203, 126, 628, 582, 1004, 135, 837, 1000
OFFSET
1,1
COMMENTS
Conjecture: a(n) exists for any n > 0. In general, for any positive integers a, m and n, there are integers i,j,k > 0 with i > j such that (prime(i*n)+prime(j*n))/2 (or (prime(i*n)-prime(j*n))/2) is equal to a*prime(k*n)^m.
REFERENCES
Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.
LINKS
Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641 [math.NT], 2014.
EXAMPLE
a(1) = 3 since (prime(2*1)+prime(3*1))/2 = (3+5)/2 = 2^2 = prime(1*1)^2.
a(158) = 8405 since (prime(778*158)+prime(8405*158))/2 = (1625551+20967091)/2 = 3361^2 = prime(3*158)^2.
MATHEMATICA
PQ[n_, m_]:=PrimeQ[Sqrt[m]]&&Mod[PrimePi[Sqrt[m]], n]==0
Do[k=0; Label[bb]; k=k+1; Do[If[PQ[n, (Prime[k*n]+Prime[j*n])/2], Goto[aa]]; Continue, {j, 1, k-1}]; Goto[bb];
Label[aa]; Print[n, " ", k]; Continue, {n, 1, 60}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Jul 15 2015
STATUS
approved