[go: up one dir, main page]

login
A367305
Table read by antidiagonals: Place k equally spaced points on each side of a regular n-gon and join every pair of these n*k points by a chord; T(n,k) (n >= 3, k >= 0) gives the number of edges in the resulting planar graph.
3
3, 9, 4, 48, 16, 5, 237, 156, 30, 6, 684, 788, 460, 54, 7, 1962, 2880, 2660, 888, 105, 8, 3630, 6468, 9055, 5274, 2086, 152, 9, 7617, 15800, 23000, 16914, 11830, 3400, 306, 10, 12654, 27828, 49515, 44874, 39725, 19240, 6264, 410, 11, 21114, 49936, 93995, 96630, 100569, 67632, 34947, 9170, 737, 12
OFFSET
3,1
COMMENTS
See A367302, A367304, A366485, A367279 for images of the n-gons.
FORMULA
a(n,k) = A367302(n,k) + A367304(n,k) - 1 (Euler).
EXAMPLE
The table begins:
3, 9, 48, 237, 684, 1962, 3630, 7617, 12654, 21114, 31170, 50280, 66687, 99342, ...
4, 16, 156, 788, 2880, 6468, 15800, 27828, 49936, 78732, 134656, 173396, ...
5, 30, 460, 2660, 9055, 23000, 49515, 93995, 163100, 264635, 407325, 600550, ...
6, 54, 888, 5274, 16914, 44874, 96630, 182718, 314334, 518832, 804030, 1180314, ...
7, 105, 2086, 11830, 39725, 100569, 213339, 402479, 695240, 1124046, 1726305, ...
8, 152, 3400, 19240, 67632, 169720, 368560, 689408, 1201416, 1935944, 2993104, ...
9, 306, 6264, 34947, 115749, 291132, 614979, 1155708, 1991448, 3214809, ...
10, 410, 9170, 51670, 176460, 440940, 943520, 1764520, 3055110, 4922870, ...
11, 737, 14850, 81620, 268521, 671869, 1415139, 2652837, 4563944, 7358736, ...
12, 780, 17172, 109224, 370584, 924912, 1992528, 3723372, 6442428, 10386180, ...
13, 1534, 30212, 164203, 537303, 1339702, 2815995, 5269758, 9055800, ...
14, 1750, 39774, 217112, 723940, 1795290, 3801168, 7091406, 12223806, ...
15, 2865, 55230, 297600, 969765, 2411595, 5061195, 9459285, 16241160, ...
.
.
.
CROSSREFS
Cf. A367302 (vertices), A367303 (internal vertices), A367304 (regions), A366485 (first row), A367279 (second row).
Sequence in context: A180485 A370464 A357254 * A258580 A021966 A016675
KEYWORD
nonn,tabl
AUTHOR
Scott R. Shannon, Nov 13 2023
STATUS
approved