[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257938
Least positive integer k such that prime(k*n) - 1 = (prime(i*n)-1)*(prime(j*n)-1) for some integers 0 < i < j < k.
8
6, 3, 8, 71, 12, 14, 105, 221, 24, 499, 261, 612, 1341, 175, 917, 549, 1351, 2303, 2273, 4767, 364, 1395, 1390, 1431, 6481, 2479, 918, 2412, 17783, 3178, 2994, 7538, 3409, 1361, 9645, 3454, 9197, 7074, 10418, 6059, 36235, 182, 1910, 4648, 1130, 695, 3973, 10839, 8647, 7942
OFFSET
1,1
COMMENTS
Conjecture: a(n) exists for any n > 0. In general, for any nonzero integer m and positive integer n, the set {prime(k*n)+m: k = 1,2,3,...} always contains three distinct elements x, y and z with x*y = z.
REFERENCES
Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.
LINKS
Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641 [math.NT], 2014.
EXAMPLE
a(1) = 6 since prime(6*1)-1 = 12 = 2*6 = (prime (2*1)-1)*(prime(4*1)-1).
a(4) = 71 since prime(71*4)-1 = 1860 = 6*310 = (prime(1*4)-1)*(prime(16*4)-1).
a(41) = 36235 since prime(36235*41)-1 = 23634312 = 676*34962 = (prime(3*41)-1)*(prime(91*41)-1).
a(69) = 64999 since prime(64999*69)-1 = 76643820 = 4590*16698 = (prime(9*69)-1)*(prime(28*69)-1).
a(77) = 137789 since prime(137789*77)-1 = 191037600 = 2028*94200 = (prime(4*77)-1)*(prime(118*77)-1).
a(99) = 167708 since prime(167708*99)-1 = 306849088 = 10528*29146 = (prime(13*99)-1)*(prime(32*99)-1).
a(189) = 951492 since prime(951492*189)-1 = 3776304996 = 4126*915246 = (prime(3*189)-1)*(prime(383*189)-1).
MATHEMATICA
Dv[n_]:=Divisors[Prime[n]-1]
L[n_]:=Length[Dv[n]]
P[k_, n_, i_]:=PrimeQ[Part[Dv[k*n], i]+1]&&Mod[PrimePi[Part[Dv[k*n], i]+1], n]==0
Do[k=0; Label[bb]; k=k+1; Do[If[P[k, n, i]&&P[k, n, L[k*n]-i+1], Goto[aa]], {i, 2, L[k*n]/2}]; Goto[bb]; Label[aa]; Print[n, " ", k]; Continue, {n, 1, 50}]
PROG
(PARI) a(n)={my(i, j, k=3); while(1, for(j=2, k-1, for(i=1, j-1, if(prime(k*n) - 1 == (prime(i*n)-1)*(prime(j*n)-1), break(3)); )); k++); return(k); }
main(size)={return(vector(size, n, a(n))); } /* Anders Hellström, Jul 13 2015 */
CROSSREFS
Sequence in context: A220085 A242013 A242962 * A153632 A308170 A197511
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Jul 13 2015
STATUS
approved