[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258023
Numbers of form (2^i)*(3^j) or (3^i)*(5^j).
4
1, 2, 3, 4, 5, 6, 8, 9, 12, 15, 16, 18, 24, 25, 27, 32, 36, 45, 48, 54, 64, 72, 75, 81, 96, 108, 125, 128, 135, 144, 162, 192, 216, 225, 243, 256, 288, 324, 375, 384, 405, 432, 486, 512, 576, 625, 648, 675, 729, 768, 864, 972, 1024, 1125, 1152, 1215, 1296
OFFSET
1,2
COMMENTS
Union of A003586 and A003593;
A006530(a(n)) <= 5; A001221(a(n)) <= 2; a(n) mod 10 != 0.
FORMULA
a(n) ~ exp(sqrt(2*log(2)*log(3)*log(5)*n / log(10))) / sqrt(3). - Vaclav Kotesovec, Sep 22 2020
Sum_{n>=1} 1/a(n) = 27/8. - Amiram Eldar, Sep 23 2020
EXAMPLE
. n | a(n) | n | a(n) |
. ----+-------+---------- ----+-------+------------
. 1 | 1 | 1 16 | 32 | 2^5
. 2 | 2 | 2 17 | 36 | 2^2 * 3^2
. 3 | 3 | 3 18 | 45 | 3^2 * 5
. 4 | 4 | 2^2 19 | 48 | 2^4 * 3
. 5 | 5 | 5 20 | 54 | 2 * 3^3
. 6 | 6 | 2 * 3 21 | 64 | 2^6
. 7 | 8 | 2^3 22 | 72 | 2^3 * 3^2
. 8 | 9 | 3^2 23 | 75 | 3 * 5^2
. 9 | 12 | 2^2 * 3 24 | 81 | 3^4
. 10 | 15 | 3 * 5 25 | 96 | 2^5 * 3
. 11 | 16 | 2^4 26 | 108 | 2^2 * 3^3
. 12 | 18 | 2 * 3^2 27 | 125 | 5^3
. 13 | 24 | 2^3 * 3 28 | 128 | 2^7
. 14 | 25 | 5^2 29 | 135 | 3^3 * 5
. 15 | 27 | 3^3 30 | 144 | 2^4 * 3^2
MATHEMATICA
n = 10^4; Join[Table[2^i*3^j, {i, 0, Log[2, n]}, {j, 0, Log[3, n/2^i]}], Table[3^i*5^j, {i, 0, Log[3, n]}, {j, 0, Log[5, n/3^i]}]] // Flatten // Union (* Amiram Eldar, Sep 23 2020 *)
PROG
(Haskell)
import Data.List.Ordered (union)
a258023 n = a258023_list !! (n-1)
a258023_list = union a003586_list a003593_list
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, May 16 2015
STATUS
approved