[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257997
Numbers of the form (2^i)*(3^j) or (2^i)*(5^j) or (3^i)*(5^j).
6
1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 27, 32, 36, 40, 45, 48, 50, 54, 64, 72, 75, 80, 81, 96, 100, 108, 125, 128, 135, 144, 160, 162, 192, 200, 216, 225, 243, 250, 256, 288, 320, 324, 375, 384, 400, 405, 432, 486, 500, 512, 576, 625, 640
OFFSET
1,2
COMMENTS
Union of A003586, A003592 and A003593.
Subsequence of 5-smooth numbers (cf. A051037), having no more than two distinct prime factors: A006530(a(n)) <= 5; A001221(a(n)) <= 2.
FORMULA
a(n) ~ exp(sqrt(2*log(2)*log(3)*log(5)*n/log(30))). - Vaclav Kotesovec, Sep 22 2020
Sum_{n>=1} 1/a(n) = 29/8. - Amiram Eldar, Sep 23 2020
EXAMPLE
. ----+------+--------- ----+------+-----------
. 1 | 1 | 1 16 | 25 | 5^2
. 2 | 2 | 2 17 | 27 | 3^3
. 3 | 3 | 3 18 | 32 | 2^5
. 4 | 4 | 2^2 19 | 36 | 2^2 * 3^2
. 5 | 5 | 5 20 | 40 | 2^3 * 5
. 6 | 6 | 2 * 3 21 | 45 | 3^2 * 5
. 7 | 8 | 2^3 22 | 48 | 2^4 * 3
. 8 | 9 | 3^2 23 | 50 | 2 * 5^2
. 9 | 10 | 2 * 5 24 | 54 | 2 * 3^3
. 10 | 12 | 2^2 * 3 25 | 64 | 2^6
. 11 | 15 | 3 * 5 26 | 72 | 2^3 * 3^2
. 12 | 16 | 2^4 27 | 75 | 3 * 5^2
. 13 | 18 | 2 * 3^2 28 | 80 | 2^4 * 5
. 14 | 20 | 2^2 * 5 29 | 81 | 3^4
. 15 | 24 | 2^3 * 3 30 | 96 | 2^5 * 3
MATHEMATICA
n = 1000; Join[Table[2^i*3^j, {i, 0, Log[2, n]}, {j, 0, Log[3, n/2^i]}], Table[3^i*5^j, {i, 0, Log[3, n]}, {j, 0, Log[5, n/3^i]}], Table[2^i*5^j, {i, 0, Log[2, n]}, {j, 0, Log[5, n/2^i]}]] // Flatten // Union (* Amiram Eldar, Sep 23 2020 *)
PROG
(Haskell)
import Data.List.Ordered (unionAll)
a257997 n = a257997_list !! (n-1)
a257997_list = unionAll [a003586_list, a003592_list, a003593_list]
CROSSREFS
Sequence in context: A051661 A051037 A250089 * A070023 A035303 A291719
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, May 16 2015
STATUS
approved