[go: up one dir, main page]

login
A248143
Least integer m > 0 such that m + n divides p(m) + p(n), where p(.) is the partition function given by A000041.
3
1, 1, 1, 61, 13, 7, 1, 25, 109, 41, 60, 1, 5, 24, 18, 6, 3, 7, 38, 12, 86, 31, 18, 14, 8, 96, 470, 2, 37, 245, 8, 6, 37, 2, 20, 137, 3, 19, 24, 63, 10, 99, 52, 32, 16, 638, 15, 20, 61, 45, 288, 43, 52, 12, 371, 123, 94, 8, 483, 11
OFFSET
1,4
COMMENTS
Conjecture: a(n) exists for any n > 0.
LINKS
EXAMPLE
a(5) = 13 since 5 + 13 = 18 divides p(5) + p(13) = 7 + 101 = 108.
MATHEMATICA
Do[m=1; Label[aa]; If[Mod[PartitionsP[m]+PartitionsP[n], m+n]==0, Print[n, " ", m]; Goto[bb]]; m=m+1; Goto[aa]; Label[bb]; Continue, {n, 1, 60}]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Oct 02 2014
STATUS
approved