[go: up one dir, main page]

login
A247940
Least integer m > n such that m + n divides L(m) + L(n), where L(k) refers to the Lucas number A000032(k).
11
5, 5, 15, 5, 19, 30, 17, 19, 15, 13, 13, 24, 35, 236, 33, 34, 31, 90, 29, 23, 27, 25, 25, 84, 47, 80, 45, 190, 43, 54, 41, 35, 39, 1216, 37, 72, 59, 212, 57, 43, 55, 66, 53, 86, 51, 76, 49, 60, 71, 53, 69, 55, 67, 222, 65, 122, 63, 112, 61, 264
OFFSET
1,1
COMMENTS
Conjecture: Let A be any integer not congruent to 3 modulo 6. Define v(0) = 2, v(1) = A, and v(n+1) = A*v(n) + v(n-1) for n > 0. Then, for any integer n > 0, there are infinitely many positive integers m such that m + n divides v(m) + v(n).
This implies that a(n) exists for any n > 0.
EXAMPLE
a(3) = 15 since 15 + 3 = 18 divides L(15) + L(3) = 1364 + 4 = 18*76.
MATHEMATICA
Do[m=n+1; Label[aa]; If[Mod[LucasL[m]+LucasL[n], m+n]==0, Print[n, " ", m]; Goto[bb]]; m=m+1; Goto[aa]; Label[bb]; Continue, {n, 1, 60}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Sep 27 2014
STATUS
approved