OFFSET
1,1
COMMENTS
Conjecture: Let A be any integer not congruent to 3 modulo 6. Define v(0) = 2, v(1) = A, and v(n+1) = A*v(n) + v(n-1) for n > 0. Then, for any integer n > 0, there are infinitely many positive integers m such that m + n divides v(m) + v(n).
This implies that a(n) exists for any n > 0.
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
EXAMPLE
a(3) = 15 since 15 + 3 = 18 divides L(15) + L(3) = 1364 + 4 = 18*76.
MATHEMATICA
Do[m=n+1; Label[aa]; If[Mod[LucasL[m]+LucasL[n], m+n]==0, Print[n, " ", m]; Goto[bb]]; m=m+1; Goto[aa]; Label[bb]; Continue, {n, 1, 60}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Sep 27 2014
STATUS
approved