[go: up one dir, main page]

login
A106416
Smallest number beginning with 6 that is the product of exactly n distinct primes.
2
61, 6, 66, 690, 6006, 62790, 690690, 60138078, 606996390, 6469693230, 600319429710, 60007743265470, 600277546959090, 60039293728424010, 614889782588491410, 60865792091025932010, 6000526229622444289770
OFFSET
1,1
LINKS
EXAMPLE
a(3) = 66 = 2*3*11.
PROG
(Python)
from itertools import count
from math import prod, isqrt
from sympy import primerange, integer_nthroot, primepi, primorial
def A106416(n):
if n == 1: return 61
def g(x, a, b, c, m): yield from (((d, ) for d in enumerate(primerange(b+1, isqrt(x//c)+1), a+1)) if m==2 else (((a2, b2), )+d for a2, b2 in enumerate(primerange(b+1, integer_nthroot(x//c, m)[0]+1), a+1) for d in g(x, a2, b2, c*b2, m-1)))
def f(x): return int(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x, 0, 1, 1, n)))
for l in count(len(str(primorial(n)))-1):
kmin, kmax = 6*10**l-1, 7*10**l-1
mmin, mmax = f(kmin), f(kmax)
if mmax>mmin:
while kmax-kmin > 1:
kmid = kmax+kmin>>1
mmid = f(kmid)
if mmid > mmin:
kmax, mmax = kmid, mmid
else:
kmin, mmin = kmid, mmid
return kmax # Chai Wah Wu, Sep 12 2024
KEYWORD
base,nonn
AUTHOR
Ray Chandler, May 02 2005
STATUS
approved