[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A239895
Triangle read by rows: T(n,k) (n >= 1, 1 <= k <= n) = number of alternating anagrams on n letters (of length 2n) which are decomposable into at most k components.
1
1, 1, 1, 3, 3, 1, 16, 15, 6, 1, 129, 110, 45, 10, 1, 1438, 1104, 435, 105, 15, 1, 20955, 14455, 5334, 1295, 210, 21, 1, 384226, 238536, 81256, 19089, 3220, 378, 28, 1, 8623101, 4834854, 1509246, 335496, 56259, 7056, 630, 36, 1
OFFSET
1,4
COMMENTS
The Bell transform of A218827(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 17 2016
LINKS
Kreweras, G. and Dumont, D., Sur les anagrammes alternés. (French) [On alternating anagrams] Discrete Math. 211 (2000), no. 1-3, 103--110. MR1735352 (2000h:05013).
FORMULA
T(n,k) = C(n-1,0)*c(1)*T(n-1,k-1) + C(n-1,1)*c(2)*T(n-2,k-1) + ... + C(n-1,n-1)*c(n-k+1)*T(k-1,k-1), where c(i) = A218827(i).
EXAMPLE
Triangle begins:
1;
1, 1;
3, 3, 1;
16, 15, 6, 1;
129, 110, 45, 10, 1;
1438, 1104, 435, 105, 15, 1;
20955, 14455, 5334, 1295, 210, 21, 1;
384226, 238536, 81256, 19089, 3220, 378, 28, 1;
MATHEMATICA
m = 10(*terms of A218827 for m-1 rows*); matc = Array[0&, {m, m}];
(* The function BellMatrix is defined in A264428.*)
a366[n_] := (-2^(-1))^(n - 2)*Sum[Binomial[n, k]*(1 - 2^(n + k + 1))* BernoulliB[n + k + 1], {k, 0, n}];
ci[n_, k_] := ci[n, k] = Module[{v}, If[matc[[n, k]] == 0, If[n == k, v = 1, If[k == 1, v = c[n], v = Sum[Binomial[n - 1, i - 1]*c[i]*ci[n - i, k - 1], {i, 1, n - k + 1}]]]; matc[[n, k]] = v]; Return[matc[[n, k]] ]];
c[n_] := a366[n + 1] - If[n == 1, 0, Sum[ci[n, i], {i, 2, n}]]
T = Rest /@ BellMatrix[c[# + 1]&, m] // Rest;
Table[T[[n, k]], {n, 1, m - 1}, {k, 1, n}] // Flatten (* Jean-François Alcover, Aug 03 2019 *)
PROG
(Sage) # uses[bell_matrix from A264428, A218827]
# Adds a column 1, 0, 0, 0, ... at the left side of the triangle.
A239895_generator = lambda n: A218827(n+1)
bell_matrix(A239895_generator, 9) # Peter Luschny, Jan 17 2016
CROSSREFS
Row sums are A000366. First column is A218827.
Sequence in context: A123244 A364505 A105599 * A106210 A033842 A104417
KEYWORD
nonn,tabl,more
AUTHOR
N. J. A. Sloane, Apr 04 2014
EXTENSIONS
More terms from Peter Luschny, Jan 17 2016
STATUS
approved