[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A239894
Triangle read by rows: T(n,k) (n>=1, 1 <= k <= n) = number of alternating anagrams on n letters (of length 2n) which are decomposable into at most k slices.
3
1, 1, 1, 4, 2, 1, 25, 9, 3, 1, 217, 58, 15, 4, 1, 2470, 500, 100, 22, 5, 1, 35647, 5574, 861, 152, 30, 6, 1, 637129, 78595, 9435, 1313, 215, 39, 7, 1, 13843948, 1376162, 130159, 14192, 1870, 290, 49, 8, 1, 360022957, 29417919, 2232792, 191850, 20001, 2547, 378, 60, 9, 1
OFFSET
1,4
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1275 (first 50 rows)
Kreweras, G.; Dumont, D. , Sur les anagrammes alternés. (French) [On alternating anagrams] Discrete Math. 211 (2000), no. 1-3, 103--110. MR1735352 (2000h:05013).
FORMULA
T(n,k) = b(1)*T(n-1,k-1)+b(2)*T(n-2,k-1)+...+b(n-k+1)*T(k-1,k-1), where b(i) = A218826(i) for k > 1.
T(n,k) = Sum_{i=1..n-k+1} A218826(i)*T(n-i, k-1) for k > 1. - Andrew Howroyd, Feb 24 2020
EXAMPLE
Triangle begins:
1
1 1
4 2 1
25 9 3 1
217 58 15 4 1
...
PROG
(PARI) \\ here G(n) is A000366(n).
G(n)={(-1/2)^(n-2)*sum(k=0, n, binomial(n, k)*(1-2^(n+k+1))*bernfrac(n+k+1))}
A(n)={my(M=matrix(n, n)); for(n=1, n, for(k=2, n, M[n, k] = sum(i=1, n-k+1, M[i, 1]*M[n-i, k-1])); M[n, 1]=G(n+1)-sum(i=2, n, M[n, i])); M}
{my(T=A(10)); for(n=1, #T, print(T[n, 1..n]))} \\ Andrew Howroyd, Feb 24 2020
CROSSREFS
Row sums are A000366.
First column is A218826.
Sequence in context: A111536 A111559 A224798 * A152406 A105623 A364870
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Apr 04 2014
EXTENSIONS
Terms a(16) and beyond from Andrew Howroyd, Feb 19 2020
STATUS
approved