[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A239874
Integers k such that 2*k^2 + 1 and 2*k^3 + 1 are prime.
5
1, 6, 9, 21, 27, 30, 72, 96, 99, 162, 186, 204, 237, 264, 297, 321, 357, 360, 375, 492, 537, 621, 759, 819, 834, 897, 936, 1065, 1242, 1326, 1329, 1359, 1419, 1494, 1506, 1596, 1662, 1704, 1740, 1749, 1761, 1842, 1869, 2157, 2175, 2250, 2274, 2451, 2547
OFFSET
1,2
COMMENTS
All terms > 1 are multiples of 3. Also, no term is congruent to 3 modulo 5.
LINKS
Zak Seidov, Table of n, a(n) for n = 1..1367 [Duplicate terms removed by Georg Fischer, Nov 03 2024]
MAPLE
select(t -> isprime(2*t^2+1) and isprime(2*t^3+1), [$1..6000]); # Robert Israel, Nov 03 2024
MATHEMATICA
s={1}; Do[If[PrimeQ [2k^2+1]&&PrimeQ[2k^3+1], AppendTo[s, k]], {k, 3, 10^3, 3}]; s
Select[Range[3500], PrimeQ[2 #^2 + 1] && PrimeQ[2 #^3 + 1]&] (* Vincenzo Librandi, Mar 29 2014 *)
PROG
(PARI) s=[]; for(n=1, 4000, if(isprime(2*n^2+1) && isprime(2*n^3+1), s=concat(s, n))); s \\ Colin Barker, Mar 28 2014
CROSSREFS
Intersection of A089001 and A168550.
Sequence in context: A355484 A358222 A165717 * A043103 A242756 A268665
KEYWORD
nonn
AUTHOR
Zak Seidov, Mar 28 2014
STATUS
approved