# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a239874 Showing 1-1 of 1 %I A239874 #25 Nov 03 2024 18:53:45 %S A239874 1,6,9,21,27,30,72,96,99,162,186,204,237,264,297,321,357,360,375,492, %T A239874 537,621,759,819,834,897,936,1065,1242,1326,1329,1359,1419,1494,1506, %U A239874 1596,1662,1704,1740,1749,1761,1842,1869,2157,2175,2250,2274,2451,2547 %N A239874 Integers k such that 2*k^2 + 1 and 2*k^3 + 1 are prime. %C A239874 All terms > 1 are multiples of 3. Also, no term is congruent to 3 modulo 5. %H A239874 Zak Seidov, Table of n, a(n) for n = 1..1367 [Duplicate terms removed by _Georg Fischer_, Nov 03 2024] %p A239874 select(t -> isprime(2*t^2+1) and isprime(2*t^3+1), [$1..6000]); # _Robert Israel_, Nov 03 2024 %t A239874 s={1};Do[If[PrimeQ [2k^2+1]&&PrimeQ[2k^3+1],AppendTo[s,k]],{k,3,10^3,3}];s %t A239874 Select[Range[3500], PrimeQ[2 #^2 + 1] && PrimeQ[2 #^3 + 1]&] (* _Vincenzo Librandi_, Mar 29 2014 *) %o A239874 (PARI) s=[]; for(n=1, 4000, if(isprime(2*n^2+1) && isprime(2*n^3+1), s=concat(s, n))); s \\ _Colin Barker_, Mar 28 2014 %Y A239874 Intersection of A089001 and A168550. %K A239874 nonn %O A239874 1,2 %A A239874 _Zak Seidov_, Mar 28 2014 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE