[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A165717
Integers of the form k*(5+k)/4.
6
6, 9, 21, 26, 44, 51, 75, 84, 114, 125, 161, 174, 216, 231, 279, 296, 350, 369, 429, 450, 516, 539, 611, 636, 714, 741, 825, 854, 944, 975, 1071, 1104, 1206, 1241, 1349, 1386, 1500, 1539, 1659, 1700, 1826, 1869, 2001, 2046, 2184, 2231, 2375, 2424, 2574, 2625
OFFSET
1,1
COMMENTS
Integers of the form k+k*(k+1)/4 = k+A000217(k)/2; for k see A014601, for A000217(k)/2 see A074378.
Are all terms composite?
Yes, because a(2*k) = k*(4*k+5) and a(2*k-1) = (k+1)*(4*k-1). - Bruno Berselli, Apr 07 2013
Numbers m such that 16*m + 25 is a square. - Vincenzo Librandi, Apr 07 2013
FORMULA
From R. J. Mathar, Sep 25 2009: (Start)
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
G.f.: x*(-6-3*x+x^3)/( (1+x)^2 * (x-1)^3 ). (End)
Sum_{n>=1} 1/a(n) = 29/25 - Pi/5. - Amiram Eldar, Jul 26 2024
EXAMPLE
For k =1,2,3,.. the value of k*(k+5)/4 is 3/2, 7/2, 6, 9, 25/2, 33/2, 21, 26, 63/2, 75/2, 44, 51,.. and the integer values define the sequence.
MATHEMATICA
q=2; s=0; lst={}; Do[s+=((n+q)/q); If[IntegerQ[s], AppendTo[lst, s]], {n, 6!}]; lst
Select[Table[k*(5+k)/4, {k, 100}], IntegerQ] (* or *) LinearRecurrence[ {1, 2, -2, -1, 1}, {6, 9, 21, 26, 44}, 60] (* Harvey P. Dale, Aug 11 2011 *)
Select[Range[1, 3000], IntegerQ[Sqrt[16 # + 25]]&] (* Vincenzo Librandi, Apr 07 2013 *)
PROG
(Magma) [n: n in [1..3000] | IsSquare(16*n+25)]; // Vincenzo Librandi, Apr 07 2013
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Definition simplified by R. J. Mathar, Sep 25 2009
STATUS
approved