[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A216384
Numbers that can be expressed as the sum of their first k consecutive arithmetic derivatives for some k > 1.
3
6, 38, 42, 62, 146, 1145, 4214, 15590, 47058, 121935, 464834, 4049465, 4759314, 7756755, 15838490, 18284105, 127137997, 132734042, 141393578, 353493351, 435485242, 470458377, 1056410914
OFFSET
1,1
COMMENTS
If k = 1 is allowed, then numbers of the form p^p also occur, where p is prime. These are the terms of A051674. - T. D. Noe, Dec 27 2012
EXAMPLE
6’=5; 5’=1; 6=5+1 (k=2);
38’=21; 21’=10; 10’=7; 38=21+10+7 (k=3);
42’=41; 41’=1; 42=41+1 (k=2);
62’=33; 33’=14; 14’=9; 9'=6; 62=33+14+9+6 (k=4);
146’=75; 75’=55; 55’=16; 146=75+55+16 (k=3);
1145’=234; 234’=291; 291’=100; 100'=140; 140'=188; 188'=192; 1145=234+291+100+140+188+192 (k=6).
MAPLE
with(numtheory);
A216384:= proc(i)
local a, b, n, p, pfs;
for n from 1 to i do
pfs:=ifactors(n)[2]; a:=n*add(op(2, p)/op(1, p), p=pfs);
if a<n then b:=a;
while b<n do
pfs:=ifactors(a)[2]; a:=a*add(op(2, p)/op(1, p), p=pfs);
if a=0 then break; else b:=b+a; fi;
od;
if b=n then print(n); fi; fi; od;
end:
A216384 (10000000);
MATHEMATICA
d[1]=0; d[n_] := n*Total[#2/#1 & @@@ FactorInteger[n]]; seqQ[n_] := Module[{s = 0, k = n}, While[s < n && k > 0, k = d[k]; s += k]; k < n && s == n]; Select[ Range[16000], seqQ] (* Amiram Eldar, Mar 30 2019 *)
PROG
(Python)
from sympy import factorint
A216384 = []
for n in range(1, 10**5):
....ndsum = nd = sum([int(n*e/p) for p, e in factorint(n).items()])
....while ndsum <= n and nd > 1:
........nd = sum([int(nd*e/p) for p, e in factorint(nd).items()])
........ndsum += nd
........if ndsum == n:
............A216384.append(n)
# Chai Wah Wu, Aug 21 2014
(PARI) der(n) = sum(i=1, #f=factor(n)~, n/f[1, i]*f[2, i]);
isok(n) = {my(s = 0, kn = n, nb = 0, d); until (s == kn, d = der(n); if (d==0, return(0)); s += d; if (s > kn, return (0)); n = d; nb++; ); nb > 1; } \\ Michel Marcus, Mar 30 2019
CROSSREFS
Sequence in context: A243843 A039293 A055713 * A360739 A352305 A060454
KEYWORD
nonn,more
AUTHOR
Paolo P. Lava, Sep 06 2012
EXTENSIONS
a(20)-a(23) from Amiram Eldar, Mar 30 2019
STATUS
approved