[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a216384 -id:a216384
     Sort: relevance | references | number | modified | created      Format: long | short | data
Numbers n that can be expressed as the sum of the arithmetic derivatives of k previous numbers starting from n for some k >= 1.
+10
2
4, 5, 6, 7, 27, 42, 43, 1310, 3125, 47058, 47059, 151747, 192382, 192383, 244419, 257614, 823543, 28170538, 28170539, 36861843, 48647587, 556429758, 2736456639, 26781610526
OFFSET
1,1
COMMENTS
A051674 is a subsequence of this sequence.
FORMULA
n = Sum{j=1..k} (n-j+1)', for some k >= 1.
EXAMPLE
k=1: n=27 -> 27 = 27'.
k=2: n=1310 -> 1310 = 1310'+1309' = 927+383.
k=3: n=43 -> 43 = 43'+42'+41' = 1+41+1.
MAPLE
with(numtheory);
A187807:= proc(i)
local a, b, c, n.p;
for n from 4 to i do
a:=0; b:=-1;
while a<n do b:=b+1; a:=a+(n-b)*add(op(2, p)/op(1, p), p=ifactors(n-b)[2]); od;
if a=n then print(n); fi; od; end:
A187807(100000000);
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Paolo P. Lava, Jan 07 2013
EXTENSIONS
a(22)-a(24) from Donovan Johnson, Jan 26 2013
STATUS
approved
Numbers n that can be expressed as the sum of the arithmetic derivatives of k consecutive numbers starting from n for some k.
+10
2
1, 2, 4, 6, 25, 27, 33, 42, 221, 274, 581, 1957, 3125, 11406, 47058, 823543, 1535573, 5056941, 19246541, 19571621, 36861842, 50330577, 2590282517, 45546909393
OFFSET
1,2
COMMENTS
A051674 is a subsequence of this sequence.
FORMULA
n = Sum_{j=1..k} (n+j-1)', for some k >= 1.
EXAMPLE
k=1: n=27 -> 27 = 27'.
k=2: n=33 -> 33 = 33' + 34' = 14 + 19.
k=3: n=1957 -> 1957 = 1957' + 1958' + 1959' = 122 + 1179 + 656.
MAPLE
with(numtheory);
A195333:=proc(i)
local b, c, n, p;
for n from 1 to i do c:=0; b:=-1;
while c<n do b:=b+1; c:=c+(n+b)*add(op(2, p)/op(1, p), p=ifactors(n+b)[2]); od;
if n=c then print(n); fi; od; end:
A195333(10000000);
MATHEMATICA
dn[0] = 0; dn[1] = 0; dn[n_?Negative] := -dn[-n]; dn[n_] := Module[{f = Transpose[FactorInteger[n]]}, If[PrimeQ[n], 1, Plus @@ (n*f[[2]]/f[[1]])]]; t = {}; Do[k = n; sm = dn[n]; While[sm < n, k++; sm = sm + dn[k]]; If[sm == n, AppendTo[t, n]], {n, 100000}]; t (* T. D. Noe, Jan 04 2013 *)
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Paolo P. Lava, Jan 03 2013
EXTENSIONS
a(23)-a(24) from Donovan Johnson, Jan 26 2013
STATUS
approved

Search completed in 0.005 seconds