[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A203647
T(n,k) = number of arrays of n 0..k integers with new values introduced in order 0..k but otherwise unconstrained. Array read by antidiagonals.
9
1, 1, 2, 1, 2, 4, 1, 2, 5, 8, 1, 2, 5, 14, 16, 1, 2, 5, 15, 41, 32, 1, 2, 5, 15, 51, 122, 64, 1, 2, 5, 15, 52, 187, 365, 128, 1, 2, 5, 15, 52, 202, 715, 1094, 256, 1, 2, 5, 15, 52, 203, 855, 2795, 3281, 512, 1, 2, 5, 15, 52, 203, 876, 3845, 11051, 9842, 1024, 1, 2, 5, 15, 52, 203, 877
OFFSET
1,3
COMMENTS
Table starts
....1.....1......1......1......1......1......1......1......1......1......1
....2.....2......2......2......2......2......2......2......2......2......2
....4.....5......5......5......5......5......5......5......5......5......5
....8....14.....15.....15.....15.....15.....15.....15.....15.....15.....15
...16....41.....51.....52.....52.....52.....52.....52.....52.....52.....52
...32...122....187....202....203....203....203....203....203....203....203
...64...365....715....855....876....877....877....877....877....877....877
..128..1094...2795...3845...4111...4139...4140...4140...4140...4140...4140
..256..3281..11051..18002..20648..21110..21146..21147..21147..21147..21147
..512..9842..43947..86472.109299.115179.115929.115974.115975.115975.115975
.1024.29525.175275.422005.601492.665479.677359.678514.678569.678570.678570
Lower left triangular part seems to be A102661. - R. J. Mathar, Nov 29 2015
LINKS
FORMULA
T(n,k) = Sum_{j = 1..k+1} Stirling2(n,j). - Andrew Howroyd, Mar 19 2017
T(n,k) = A278984(k+1, n). - Andrew Howroyd, Mar 19 2017
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 4*a(n-1) -3*a(n-2)
k=3: a(n) = 7*a(n-1) -14*a(n-2) +8*a(n-3)
k=4: a(n) = 11*a(n-1) -41*a(n-2) +61*a(n-3) -30*a(n-4)
k=5: a(n) = 16*a(n-1) -95*a(n-2) +260*a(n-3) -324*a(n-4) +144*a(n-5)
k=6: a(n) = 22*a(n-1) -190*a(n-2) +820*a(n-3) -1849*a(n-4) +2038*a(n-5) -840*a(n-6)
k=7: a(n) = 29*a(n-1) -343*a(n-2) +2135*a(n-3) -7504*a(n-4) +14756*a(n-5) -14832*a(n-6) +5760*a(n-7)
k=8: a(n) = 37*a(n-1) -574*a(n-2) +4858*a(n-3) -24409*a(n-4) +74053*a(n-5) -131256*a(n-6) +122652*a(n-7) -45360*a(n-8)
k=9: a(n) = 46*a(n-1) -906*a(n-2) +9996*a(n-3) -67809*a(n-4) +291774*a(n-5) -790964*a(n-6) +1290824*a(n-7) -1136160*a(n-8) +403200*a(n-9)
k=10: a(n) = 56*a(n-1) -1365*a(n-2) +19020*a(n-3) -167223*a(n-4) +965328*a(n-5) -3686255*a(n-6) +9133180*a(n-7) -13926276*a(n-8) +11655216*a(n-9) -3991680*a(n-10)
k=11: a(n) = 67*a(n-1) -1980*a(n-2) +33990*a(n-3) -375573*a(n-4) +2795331*a(n-5) -14241590*a(n-6) +49412660*a(n-7) -113667576*a(n-8) +163671552*a(n-9) -131172480*a(n-10) +43545600*a(n-11)
k=12: a(n) = 79*a(n-1) -2783*a(n-2) +57695*a(n-3) -782133*a(n-4) +7284057*a(n-5) -47627789*a(n-6) +219409685*a(n-7) -703202566*a(n-8) +1519272964*a(n-9) -2082477528*a(n-10) +1606986720*a(n-11) -518918400*a(n-12)
k=13: a(n) = 92*a(n-1) -3809*a(n-2) +93808*a(n-3) -1530243*a(n-4) +17419116*a(n-5) -141963107*a(n-6) +835933384*a(n-7) -3542188936*a(n-8) +10614910592*a(n-9) -21727767984*a(n-10) +28528276608*a(n-11) -21289201920*a(n-12) +6706022400*a(n-13)
k=14: a(n) = 106*a(n-1) -5096*a(n-2) +147056*a(n-3) -2840838*a(n-4) +38786748*a(n-5) -385081268*a(n-6) +2816490248*a(n-7) -15200266081*a(n-8) +59999485546*a(n-9) -169679309436*a(n-10) +331303013496*a(n-11) -418753514880*a(n-12) +303268406400*a(n-13) -93405312000*a(n-14)
k=15: a(n) = 121*a(n-1) -6685*a(n-2) +223405*a(n-3) -5042947*a(n-4) +81308227*a(n-5) -965408015*a(n-6) +8576039615*a(n-7) -57312583328*a(n-8) +287212533608*a(n-9) -1066335473840*a(n-10) +2866534951280*a(n-11) -5367984964224*a(n-12) +6557974412544*a(n-13) -4622628648960*a(n-14) +1394852659200*a(n-15)
From Robert Israel, May 20 2016: (Start)
T(n,k) = 1 + Sum_{j=1..n-1} binomial(n-1,j-1)*T(n-j,k-1).
G.f. for columns g_k(z) satisfies g_k(z) = (z/(1-z))*(1+ g_{k-1}(z/(1-z))) with g_1(z) = z/(1-2z).
Thus g_k is a rational function: it has a simple pole at z=1/j for 1<=j<=k+1 except j=k, and it has a finite limit at infinity (so the degree of the numerator is k). This implies that column k satisfies the recurrences listed above, whose coefficients correspond to the expansion of (z-1/(k+1))* Product_{j=1..k-1}(z - 1/j).
(End)
EXAMPLE
Some solutions for n=7, k=5:
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..0....0....1....1....1....1....0....0....1....1....1....1....1....1....1....1
..1....0....2....1....2....2....1....1....2....2....2....2....1....2....1....2
..0....1....1....0....3....3....2....2....1....3....1....1....1....0....0....2
..0....0....3....1....0....4....3....0....2....3....1....1....1....0....2....1
..2....2....4....2....2....0....4....2....0....2....2....3....2....3....2....0
..1....3....1....0....2....5....0....0....0....0....0....2....2....1....1....1
MAPLE
T:= proc(n, k) option remember; if k = 1 then 2^(n-1)
else 1 + add(binomial(n-1, j-1)*procname(n-j, k-1), j=1..n-1)
fi
end proc:
seq(seq(T(k, m-k), k=1..m-1), m=2..10); # Robert Israel, May 20 2016
MATHEMATICA
T[n_, k_] := Sum[StirlingS2[n, j], {j, 1, k+1}]; Table[T[n-k+1, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Oct 31 2017, after Andrew Howroyd *)
CROSSREFS
Column 1 is A000079(n-1).
Column 2 is A007051(n-1).
Column 3 is A007581(n-1).
Column 4 is A056272.
Column 5 is A056273.
Column 6 is A099262.
Column 7 is A099263.
Column 8 is A164863.
Column 9 is A164864.
Column 10 is A203641.
Column 11 is A203642.
Column 12 is A203643.
Column 13 is A203644.
Column 14 is A203645.
Column 15 is A203646.
Diagonal is A000110.
Sequence in context: A035015 A212829 A210215 * A376826 A114791 A129994
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jan 04 2012
STATUS
approved