[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a203647 -id:a203647
     Sort: relevance | references | number | modified | created      Format: long | short | data
Array read by antidiagonals downwards: T(b,n) = number of words of length n over an alphabet of size b that are in standard order.
+10
28
1, 1, 1, 1, 2, 1, 1, 4, 2, 1, 1, 8, 5, 2, 1, 1, 16, 14, 5, 2, 1, 1, 32, 41, 15, 5, 2, 1, 1, 64, 122, 51, 15, 5, 2, 1, 1, 128, 365, 187, 52, 15, 5, 2, 1, 1, 256, 1094, 715, 202, 52, 15, 5, 2, 1, 1, 512, 3281, 2795, 855, 203, 52, 15, 5, 2, 1, 1, 1024, 9842, 11051, 3845, 876, 203, 52, 15, 5, 2, 1
OFFSET
1,5
COMMENTS
We study words made of letters from an alphabet of size b, where b >= 1. We assume the letters are labeled {1,2,3,...,b}. There are b^n possible words of length n.
We say that a word is in "standard order" if it has the property that whenever a letter i appears, the letter i-1 has already appeared in the word. This implies that all words begin with the letter 1.
Let X be the random variable that assigns to each permutation of {1,2,...,b} (with uniform distribution) its number of fixed points (as in A008290). Then T(b,n) is the n-th moment about 0 of X, i.e., the expected value of X^n. - Geoffrey Critzer, Jun 23 2020
LINKS
Joerg Arndt and N. J. A. Sloane, Counting Words that are in "Standard Order"
FORMULA
The number of words of length n over an alphabet of size b that are in standard order is Sum_{j = 1..b} Stirling2(n,j).
EXAMPLE
The array begins:
1,.1,..1,...1,...1,...1,...1,....1..; b=1, A000012
1,.2,..4,...8,..16,..32,..64,..128..; b=2, A000079
1,.2,..5,..14,..41,.122,.365,.1094..; b=3, A007051 (A278985)
1,.2,..5,..15,..51,.187,.715,.2795..; b=4, A007581
1,.2,..5,..15,..52,.202,.855,.3845..; b=5, A056272
1,.2,..5,..15,..52,.203,.876,.4111..; b=6, A056273
...
The rows tend to A000110.
MAPLE
with(combinat);
f1:=proc(L, b) local t1; i;
t1:=add(stirling2(L, i), i=1..b);
end:
Q1:=b->[seq(f1(L, b), L=1..20)]; # the rows of the array are Q1(1), Q1(2), Q1(3), ...
MATHEMATICA
T[b_, n_] := Sum[StirlingS2[n, j], {j, 1, b}]; Table[T[b-n+1, n], {b, 1, 12}, {n, b, 1, -1}] // Flatten (* Jean-François Alcover, Feb 18 2017 *)
CROSSREFS
Rows 1 through 16 of the array are: A000012, A000079, A007051 (or A124302), A007581 (or A124303), A056272, A056273, A099262, A099263, A164863, A164864, A203641-A203646.
The limit of the rows is A000110, the Bell numbers.
See A278985 for the words arising in row b=3.
Cf. A203647, A137855 (essentially same table).
KEYWORD
nonn,tabl
AUTHOR
Joerg Arndt and N. J. A. Sloane, Dec 05 2016
STATUS
approved
Number of arrays of n 0..10 integers with new values introduced in order 0..10 but otherwise unconstrained.
+10
8
1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678570, 4213596, 27644358, 190895863, 1382847419, 10477213268, 82797679445, 680685836527, 5806124780384, 51245294979716, 466668627500968, 4371727233798927, 42000637216351225
OFFSET
1,2
COMMENTS
From Danny Rorabaugh, Mar 03 2015: (Start)
a(n) is also the number of ways of placing n labeled balls into 11 indistinguishable boxes.
a(n) is also the number of word structures of length n using an 11-ary alphabet.
(End)
LINKS
Eric Weisstein's World of Mathematics, Set Partition.
Index entries for linear recurrences with constant coefficients, signature (56, -1365, 19020, -167223, 965328, -3686255, 9133180, -13926276, 11655216, -3991680).
FORMULA
Empirical: a(n) = 56*a(n-1) -1365*a(n-2) +19020*a(n-3) -167223*a(n-4) +965328*a(n-5) -3686255*a(n-6) +9133180*a(n-7) -13926276*a(n-8) +11655216*a(n-9) -3991680*a(n-10).
a(n) = Sum_{k=1..11} stirling2(n,k). - Danny Rorabaugh, Mar 03 2015
G.f.: Sum_{k=1..11} Product_{j=1..k} x/(1-j*x). This confirms the empirical recurrence. - Robert Israel, Aug 08 2016
MAPLE
f:= n -> add(Stirling2(n, k), k=1..11):
map(f, [$1..100]); # Robert Israel, Aug 08 2016
PROG
(PARI) a(n) = sum(k=1, 11, stirling(n, k, 2)); \\ Michel Marcus, Mar 03 2015
CROSSREFS
Column k=10 of A203647.
KEYWORD
nonn,easy
AUTHOR
R. H. Hardin, Jan 04 2012
STATUS
approved
Triangle read by rows: T(n,k) = Sum_{j=1..n-k+1} Stirling2(k, j).
+10
3
1, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 5, 8, 1, 1, 2, 5, 14, 16, 1, 1, 2, 5, 15, 41, 32, 1, 1, 2, 5, 15, 51, 122, 64, 1, 1, 2, 5, 15, 52, 187, 365, 128, 1, 1, 2, 5, 15, 52, 202, 715, 1094, 256, 1, 1, 2, 5, 15, 52, 203, 855, 2795, 3281, 512, 1
OFFSET
1,5
COMMENTS
Rows of the array tend to A000110 starting (1, 2, 5, 15, 52, ...).
LINKS
FORMULA
Take antidiagonals of an array formed by A000012 * A008277(transform), where A000012 = (1; 1,1; 1,1,1; ...) and A008277 = the Stirling2 triangle.
EXAMPLE
First few rows of the array:
1, 1, 1, 1, 1, ...
1, 2, 4, 8, 16, ...
1, 2, 5, 14, 41, ...
1, 2, 5, 14, 51, ...
1, 2, 5, 14, 52, ...
...
First few rows of the triangle:
1;
1, 1;
1, 2, 1;
1, 2, 4, 1;
1, 2, 5, 8, 1;
1, 2, 5, 14, 16, 1;
1, 2, 5, 15, 41, 32, 1;
1, 2, 5, 15, 51, 122, 64, 1;
1, 2, 5, 15, 52, 187, 365, 128, 1;
1, 2, 5, 15, 52, 202, 715, 1094, 256, 1;
...
PROG
(PARI) T(n, k)={sum(j=1, n-k+1, stirling(k, j, 2))} \\ Andrew Howroyd, Aug 09 2018
CROSSREFS
Row sums are A137856.
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Feb 16 2008
EXTENSIONS
Name changed by Andrew Howroyd, Aug 09 2018
STATUS
approved
Number of arrays of n 0..15 integers with new values introduced in order 0..15 but otherwise unconstrained.
+10
3
1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678570, 4213597, 27644437, 190899322, 1382958545, 10480142147, 82864869803, 682076806005, 5832742192288, 51724157478221, 474869780161021, 4506714279517080, 44151953491540255
OFFSET
1,2
COMMENTS
Column 15 of A203647.
LINKS
Index entries for linear recurrences with constant coefficients, signature (121, -6685, 223405, -5042947, 81308227, -965408015, 8576039615, -57312583328, 287212533608, -1066335473840, 2866534951280, -5367984964224, 6557974412544, -4622628648960, 1394852659200).
FORMULA
Empirical: a(n) = 121*a(n-1) -6685*a(n-2) +223405*a(n-3) -5042947*a(n-4) +81308227*a(n-5) -965408015*a(n-6) +8576039615*a(n-7) -57312583328*a(n-8) +287212533608*a(n-9) -1066335473840*a(n-10) +2866534951280*a(n-11) -5367984964224*a(n-12) +6557974412544*a(n-13) -4622628648960*a(n-14) +1394852659200*a(n-15).
Empirical formula confirmed by extension of first ten columns, see A203641. - Ray Chandler, Jul 06 2024
CROSSREFS
Cf. A203641.
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 04 2012
STATUS
approved
Number of arrays of n 0..11 integers with new values introduced in order 0..11 but otherwise unconstrained
+10
2
1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678570, 4213597, 27644436, 190899230, 1382953889, 10479970386, 82859701769, 681942165393, 5829591731684, 51656311613107, 473501669531146, 4480550589850064, 43672799989835155
OFFSET
1,2
COMMENTS
Column 11 of A203647
LINKS
Index entries for linear recurrences with constant coefficients, signature (67, -1980, 33990, -375573, 2795331, -14241590, 49412660, -113667576, 163671552, -131172480, 43545600).
FORMULA
Empirical: a(n) = 67*a(n-1) -1980*a(n-2) +33990*a(n-3) -375573*a(n-4) +2795331*a(n-5) -14241590*a(n-6) +49412660*a(n-7) -113667576*a(n-8) +163671552*a(n-9) -131172480*a(n-10) +43545600*a(n-11)
Empirical formula confirmed by extension of first ten columns, see A203641. - Ray Chandler, Jul 06 2024
CROSSREFS
Cf. A203641.
KEYWORD
nonn
AUTHOR
R. H. Hardin Jan 04 2012
STATUS
approved
Number of arrays of n 0..12 integers with new values introduced in order 0..12 but otherwise unconstrained
+10
2
1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678570, 4213597, 27644437, 190899321, 1382958439, 10480136006, 82864611947, 682068020031, 5832484170844, 51717380273487, 474706578749477, 4503047451718545, 44074082550176545
OFFSET
1,2
COMMENTS
Column 12 of A203647
LINKS
Index entries for linear recurrences with constant coefficients, signature (79, -2783, 57695, -782133, 7284057, -47627789, 219409685, -703202566, 1519272964, -2082477528, 1606986720, -518918400).
FORMULA
Empirical: a(n) = 79*a(n-1) -2783*a(n-2) +57695*a(n-3) -782133*a(n-4) +7284057*a(n-5) -47627789*a(n-6) +219409685*a(n-7) -703202566*a(n-8) +1519272964*a(n-9) -2082477528*a(n-10) +1606986720*a(n-11) -518918400*a(n-12)
Empirical formula confirmed by extension of first ten columns, see A203641. - Ray Chandler, Jul 06 2024
CROSSREFS
Cf. A203641.
KEYWORD
nonn
AUTHOR
R. H. Hardin Jan 04 2012
STATUS
approved
Number of arrays of n 0..13 integers with new values introduced in order 0..13 but otherwise unconstrained.
+10
2
1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678570, 4213597, 27644437, 190899322, 1382958544, 10480142026, 82864861847, 682076428809, 5832727748374, 51723682798067, 474855882753977, 4506342616999876, 44142711725983660
OFFSET
1,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (92, -3809, 93808, -1530243, 17419116, -141963107, 835933384, -3542188936, 10614910592, -21727767984, 28528276608, -21289201920, 6706022400).
FORMULA
Empirical: a(n) = 92*a(n-1) -3809*a(n-2) +93808*a(n-3) -1530243*a(n-4) +17419116*a(n-5) -141963107*a(n-6) +835933384*a(n-7) -3542188936*a(n-8) +10614910592*a(n-9) -21727767984*a(n-10) +28528276608*a(n-11) -21289201920*a(n-12) +6706022400*a(n-13).
Empirical formula confirmed by extension of first ten columns, see A203641. - Ray Chandler, Jul 06 2024
CROSSREFS
Column 13 of A203647.
Cf. A203641.
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 04 2012
STATUS
approved
Number of arrays of n 0..14 integers with new values introduced in order 0..14 but otherwise unconstrained.
+10
2
1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678570, 4213597, 27644437, 190899322, 1382958545, 10480142146, 82864869667, 682076796009, 5832741665152, 51724135127267, 474868970216557, 4506688232943076, 44151191130412991
OFFSET
1,2
COMMENTS
Column 14 of A203647.
LINKS
Index entries for linear recurrences with constant coefficients, signature (106, -5096, 147056, -2840838, 38786748, -385081268, 2816490248, -15200266081, 59999485546, -169679309436, 331303013496, -418753514880, 303268406400, -93405312000).
FORMULA
Empirical: a(n) = 106*a(n-1) -5096*a(n-2) +147056*a(n-3) -2840838*a(n-4) +38786748*a(n-5) -385081268*a(n-6) +2816490248*a(n-7) -15200266081*a(n-8) +59999485546*a(n-9) -169679309436*a(n-10) +331303013496*a(n-11) -418753514880*a(n-12) +303268406400*a(n-13) -93405312000*a(n-14).
Empirical formula confirmed by extension of first ten columns, see A203641. - Ray Chandler, Jul 06 2024
CROSSREFS
Cf. A203641.
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 04 2012
STATUS
approved

Search completed in 0.009 seconds