[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A376826
Array read by antidiagonals: T(n,k) = n! * [x^n] exp(2*x + (k/2)*x^2), n >= 0, k >= 0.
6
1, 1, 2, 1, 2, 4, 1, 2, 5, 8, 1, 2, 6, 14, 16, 1, 2, 7, 20, 43, 32, 1, 2, 8, 26, 76, 142, 64, 1, 2, 9, 32, 115, 312, 499, 128, 1, 2, 10, 38, 160, 542, 1384, 1850, 256, 1, 2, 11, 44, 211, 832, 2809, 6512, 7193, 512, 1, 2, 12, 50, 268, 1182, 4864, 15374, 32400, 29186, 1024
OFFSET
0,3
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1325 (first 51 antidiagonals)
Arvind Ayyer, Hiranya Kishore Dey and Digjoy Paul, How large is the character degree sum compared to the character table sum for a finite group?, arXiv preprint arXiv:2406.06036, [math.RT], 2024.
FORMULA
E.g.f. of column k: exp(2*x + k*x^2/2).
Column k is the binomial transform of column k of A359762.
T(n,k) = Sum_{i=0..floor(n/2)} binomial(n,2*i) * 2^(n-2*i) * k^i * (2*i-1)!!.
T(n,k) = Sum_{i=0..floor(n/2)} 2^(n-3*i) * k^i * n! / ((n-2*i)! * i!).
EXAMPLE
Array begins:
======================================================
n\k | 0 1 2 3 4 5 6 7 ...
----+-------------------------------------------------
0 | 1 1 1 1 1 1 1 1 ...
1 | 2 2 2 2 2 2 2 2 ...
2 | 4 5 6 7 8 9 10 11 ...
3 | 8 14 20 26 32 38 44 50 ...
4 | 16 43 76 115 160 211 268 331 ...
5 | 32 142 312 542 832 1182 1592 2062 ...
6 | 64 499 1384 2809 4864 7639 11224 15709 ...
7 | 128 1850 6512 15374 29696 50738 79760 118022 ...
...
PROG
(PARI) T(n, k) = {sum(i=0, n\2, binomial(n, 2*i) * 2^(n-2*i) * k^i * (2*i)!/(2^i*i!))}
CROSSREFS
Columns 0..5 are A000079, A005425, A000898, A202830, A193778, A202832.
Sequence in context: A212829 A210215 A203647 * A114791 A129994 A208755
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Oct 07 2024
STATUS
approved