[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193425
Expansion of e.g.f.: (1 - 2*x)^(-1/(1-x)).
2
1, 2, 12, 96, 976, 12000, 172608, 2838528, 52474112, 1076451840, 24254069760, 595235266560, 15801350443008, 451082627014656, 13778232107286528, 448348123661598720, 15483358506138009600, 565560454279135887360
OFFSET
0,2
LINKS
FORMULA
E.g.f.: exp( Sum_{n>=1} (2*x)^n/n * Sum_{k=0..n-1} 1/C(n-1,k) ).
E.g.f.: exp( Sum_{n>=1} 2*A126674(n)*x^n/n ), where A126674(n) = n!*Sum_{j=0..n-1} 2^j/(j+1).
a(n) ~ n!*n*2^n * (1 - 2*log(n)/n). - Vaclav Kotesovec, Jun 27 2013
EXAMPLE
E.g.f.: A(x) = 1 + 2*x + 12*x^2/2! + 96*x^3/3! + 976*x^4/4! + 12000*x^5/5! +...
where the logarithm involves sums of reciprocal binomial coefficients:
log(A(x)) = 2*x*(1) + (2*x)^2/2*(1 + 1) + (2*x)^3/3*(1 + 1/2 + 1) + (2*x)^4/4*(1 + 1/3 + 1/3 + 1) + (2*x)^5/5*(1 + 1/4 + 1/6 + 1/4 + 1) + (2*x)^6/6*(1 + 1/5 + 1/10 + 1/10 + 1/5 + 1) +...
Explicitly, the logarithm begins:
log(A(x)) = 2*x + 8*x^2/2! + 40*x^3/3! + 256*x^4/4! + 2048*x^5/5! + 19968*x^6/6! +...
in which the coefficients equal 2*A126674(n).
MATHEMATICA
CoefficientList[Series[(1-2*x)^(-1/(1-x)), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 27 2013 *)
PROG
(PARI) {a(n)=n!*polcoeff(exp(sum(m=1, n, 2^m*x^m/m*sum(k=0, m-1, 1/binomial(m-1, k)))+x*O(x^n)), n)}
(PARI) {a(n)=n!*polcoeff((1-2*x+x*O(x^n))^(-1/(1-x)), n)}
(Magma)
m:=50;
f:= func< x | Exp((&+[(&+[ 1/Binomial(n-1, k): k in [0..n-1]])*(2*x)^n/n: n in [1..m+2]])) >;
R<x>:=PowerSeriesRing(Rationals(), m);
Coefficients(R!(Laplace( f(x) ))); // G. C. Greubel, Feb 02 2023
(SageMath)
m=50
def f(x): return exp(sum(sum( 1/binomial(n-1, k) for k in range(n))*(2*x)^n/n for n in range(1, m+2)))
def A193425_list(prec):
P.<x> = PowerSeriesRing(QQ, prec)
return P( f(x) ).egf_to_ogf().list()
A193425_list(m) # G. C. Greubel, Feb 02 2023
CROSSREFS
Cf. A126674.
Sequence in context: A365282 A052564 A014297 * A206855 A219119 A052611
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 27 2011
STATUS
approved