[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193426
Expansion of (a(q^2) + a(q^3) - 2*a(q^6)) / 6 in powers of q where a() is a cubic AGM function.
2
0, 1, 1, 0, 0, -1, 0, 1, 1, 0, 0, 1, 0, 2, 0, 0, 0, -1, 0, 0, 2, 0, 0, -1, 0, 2, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 2, 0, 0, -2, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, -1, 0, 2, 2, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 2, 1, 0, 0, -2, 0, 0, 1, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, -1, 0, 3, 0, 0, 0, 0, 0, 2, 0
OFFSET
1,14
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of (b(q^6)^2 / b(q^3) - b(q^2)) / 3 = (c(q^6) / c(q^3)) * (c(q^3) + c(q^6)) / 3 = q^2 * psi(q) * psi(q^9)^2 / psi(q^3) in powers of q where b(), c() are cubic AGM functions and psi() is a Ramanujan theta function.
Expansion of eta(q^2)^2 * eta(q^3) * eta(q^18)^4 / (eta(q) * eta(q^6)^2 * eta(q^9)^2) in powers of q.
Euler transform of period 18 sequence [ 1, -1, 0, -1, 1, 0, 1, -1, 2, -1, 1, 0, 1, -1, 0, -1, 1, -2, ...].
Moebius transform is period 18 sequence [ 0, 1, 1, -1, 0, -3, 0, 1, 0, -1, 0, 3, 0, 1, -1, -1, 0, 0, ...].
a(3*n) = A093829(n). a(6*n) = -A093829(n). a(6*n + 2) = A033687(n). A(6*n + 3) = A033762(n). a(3*n + 1) = a(6*n + 5) = 0. a(4*n) = a(n).
EXAMPLE
G.f. = q^2 + q^3 - q^6 + q^8 + q^9 + q^12 + 2*q^14 - q^18 + 2*q^21 - q^24 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (1/4) EllipticTheta[ 2, 0, q] EllipticTheta[ 2, 0, q^9]^2 / EllipticTheta[ 2, 0, q^3], {q, 0, 2 n}];
PROG
(PARI) {a(n) = my(A, p, e, q, f); if( n<1, 0, f = valuation( n, 2); q = n / 2^f; A = factor(q); if( q%6 == 1, f%2, (-1)^f) * prod( k=1, matsize(A)[1], if( p=A[k, 1], e=A[k, 2]; if( p==3, 1, if( p%6==1, e+1, !(e%2))))))};
(PARI) {a(n) = my(A); if( n<2, 0, n = n-2; A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^3 + A) * eta(x^18 + A)^4 / (eta(x + A) * eta(x^6 + A)^2 * eta(x^9 + A)^2), n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Jul 27 2011
STATUS
approved