[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192849
Molecular topological indices of the triangular graphs.
2
0, 0, 24, 240, 1080, 3360, 8400, 18144, 35280, 63360, 106920, 171600, 264264, 393120, 567840, 799680, 1101600, 1488384, 1976760, 2585520, 3335640, 4250400, 5355504, 6679200, 8252400, 10108800, 12285000, 14820624, 17758440, 21144480
OFFSET
1,3
COMMENTS
Triangular graphs are defined for n>=2; extended to n=1 using closed form.
LINKS
G. D. Birkhoff, A determinant formula for the number of ways of coloring a map, Ann. Math., 14:42-4. See 2nd polynomial p. 5.
Eric Weisstein's World of Mathematics, Molecular Topological Index.
FORMULA
a(n) = n*(n^2 - 1)*(n-2)^2.
a(n) = 24*A027800(n-3).
G.f.: 24*x^3*(4*x+1)/(x-1)^6. - Colin Barker, Aug 07 2012
a(n) = A245334(n+1,4), n > 2. - Reinhard Zumkeller, Aug 31 2014
E.g.f.: x^3*(4 + 6*x + x^2)*exp(x). - G. C. Greubel, Jan 05 2019
From Amiram Eldar, May 14 2022: (Start)
Sum_{n>=3} 1/a(n) = Pi^2/36 - 49/216.
Sum_{n>=3} (-1)^(n+1)/a(n) = Pi^2/72 - 10*log(2)/9 + 145/216. (End)
MAPLE
[n*(n^2-1)*(n-2)^2$n=1..40]; # Muniru A Asiru, Jan 05 2019
MATHEMATICA
Table[n*(n^2-1)*(n-2)^2, {n, 1, 40}] (* G. C. Greubel, Jan 05 2019 *)
PROG
(Haskell)
a192849 n = if n < 3 then 0 else a245334 (n + 1) 4
-- Reinhard Zumkeller, Aug 31 2014
(PARI) vector(40, n, n*(n^2 -1)*(n-2)^2) \\ G. C. Greubel, Jan 05 2019
(Magma) [n*(n^2 -1)*(n-2)^2: n in [1..40]]; // G. C. Greubel, Jan 05 2019
(Sage) [n*(n^2 -1)*(n-2)^2 for n in (1..40)] # G. C. Greubel, Jan 05 2019
(GAP) List([1..40], n -> n*(n^2 -1)*(n-2)^2); # G. C. Greubel, Jan 05 2019
CROSSREFS
Sequence in context: A052663 A192491 A167548 * A253285 A052796 A056269
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Jul 11 2011
STATUS
approved