[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192847
Molecular topological indices of the tetrahedral graphs.
1
0, 0, 0, 72, 1080, 7020, 30240, 100800, 281232, 687960, 1520640, 3100680, 5920200, 10702692, 18476640, 30663360, 49180320, 76561200, 116093952, 171978120, 249502680, 355245660, 497296800, 685504512, 931748400, 1250238600, 1657843200, 2174445000, 2823328872, 3631600980
OFFSET
1,4
COMMENTS
The tetrahedral graph of order n is a vertex transitive graph with n*(n-1)*(n-2)/6 vertices and radius 3. The number of nodes at distance k=1..3 from a designated starting node are given by 3*(n-3), 3*(n-3)*(n-4)/2, (n-3)*(n-4)*(n-5)/6 respectively. - Andrew Howroyd, May 23 2017
Extended to a(1)-a(5) using the formula. - Eric W. Weisstein, Jun 26 2017
LINKS
Eric Weisstein's World of Mathematics, Molecular Topological Index
Eric Weisstein's World of Mathematics, Tetrahedral Graph
FORMULA
a(n) = n*(n-1)*(n-2)*(n-3)^2*(n^2-3*n+8)/4. - Andrew Howroyd, May 23 2017
From Eric W. Weisstein, Jun 26 2017: (Start)
a(n) = 8*a(n-1) -28*a(n-2) +56*a(n-3) -70*a(n-4) +56*a(n-5) -28*a(n-6) +8*a(n-7) -a(n-8).
G.f.: 36*x^4*(2+14*x+11*x^2+8*x^3)/(1-x)^8. (End)
E.g.f.: x^4*(12 + 24*x +9*x^2 +x^3)*exp(x)/4. - G. C. Greubel, Jan 05 2018
EXAMPLE
From Andrew Howroyd, May 23 2017 (Start)
Case n=8:
There are 56 vertices and the number of nodes which are at distances 1..3 from a designated starting node are 15,30,10. The molecular topological index for the graph is then 56*15*15 + 56*15*(1*15 + 2*30 + 3*10) = 100800.
(End)
MATHEMATICA
Table[n (n - 1) (n - 2) (n - 3)^2 (n^2 - 3 n + 8)/4, {n, 20}] (* Eric W. Weisstein, Jun 26 2017 *)
Table[6 Binomial[n, 4] (n - 3) (n^2 - 3 n + 8), {n, 20}] (* Eric W. Weisstein, Jun 26 2017 *)
LinearRecurrence[{8, -28, 56, -70, 56, -28, 8, -1}, {0, 0, 0, 72, 1080, 7020, 30240, 100800}, 20] (* Eric W. Weisstein, Jun 26 2017 *)
CoefficientList[Series[(36 x^3 (2 + 14 x + 11 x^2 + 8 x^3))/(-1 + x)^8, {x, 0, 20}], x] (* Eric W. Weisstein, Jun 26 2017 *)
PROG
(PARI) vector(40, n, n*(n-1)*(n-2)*(n-3)^2*(n^2-3*n+8)/4) \\ G. C. Greubel, Jan 05 2019
(Magma) [n*(n-1)*(n-2)*(n-3)^2*(n^2-3*n+8)/4: n in [1..40]]; // G. C. Greubel, Jan 05 2019
(Sage) [n*(n-1)*(n-2)*(n-3)^2*(n^2-3*n+8)/4 for n in (1..40)] # G. C. Greubel, Jan 05 2019
(GAP) List([1..40], n -> n*(n-1)*(n-2)*(n-3)^2*(n^2-3*n+8)/4); # G. C. Greubel, Jan 05 2019
CROSSREFS
Sequence in context: A008399 A232573 A022148 * A064567 A269088 A168194
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Jul 11 2011
EXTENSIONS
Terms a(11)-a(30) from Andrew Howroyd, May 23 2017
a(1)-a(5) added by Eric W. Weisstein, Jun 26 2017
STATUS
approved