OFFSET
0,2
COMMENTS
Number of 9-subsequences of [1, n] with just 4 contiguous pairs.
Kekulé numbers for certain benzenoids. - Emeric Deutsch, Jun 19 2005
Equals binomial transform of [1, 9, 26, 34, 21, 5, 0, 0, 0, ...]. - Gary W. Adamson, Jul 27 2008
a(n) equals the coefficient of x^4 of the characteristic polynomial of the (n+4) X (n+4) matrix with 2's along the main diagonal and 1's everywhere else (see Mathematica code below). - John M. Campbell, Jul 08 2011
Convolution of triangular numbers (A000217) and heptagonal numbers (A000566). - Bruno Berselli, Jun 27 2013
REFERENCES
Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
Herbert John Ryser, Combinatorial Mathematics, "The Carus Mathematical Monographs", No. 14, John Wiley and Sons, 1963, pp. 1-8.
S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p.233, # 9).
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Mina Aganagic, Albrecht Klemm and Cumrun Vafa, Disk Instantons, Mirror Symmetry and the Duality Web, arXiv:hep-th/0105045, 2001.
Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
FORMULA
G.f.: (1+4*x)/(1-x)^6.
a(n) = (n+1)*A000332(n+4).
Sum_{n>=0} 1/a(n) = (2/3)*Pi^2 - 49/9. - Jaume Oliver Lafont, Jul 14 2017
E.g.f.: exp(x)*(24 + 216*x + 312*x^2 + 136*x^3 + 21*x^4 + x^5)/24. - Stefano Spezia, May 08 2021
Sum_{n>=0} (-1)^n/a(n) = Pi^2/3 - 80*log(2)/3 + 145/9. - Amiram Eldar, Jan 28 2022
EXAMPLE
By the fifth comment: A000217(1..6) and A000566(1..6) give the term a(6) = 1*21 + 7*15 + 18*10 + 34*6 + 55*3 + 81*1 = 756. - Bruno Berselli, Jun 27 2013
MAPLE
a:=n->(n+1)^2*(n+2)*(n+3)*(n+4)/24: seq(a(n), n=0..40); # Emeric Deutsch
MATHEMATICA
Table[Coefficient[CharacteristicPolynomial[Array[KroneckerDelta[#1, #2] + 1 &, {n+4, n+4}], x], x^4], {n, 0, 40}] (* John M. Campbell, Jul 08 2011 *)
Table[(n+1)Binomial[n+4, 4], {n, 0, 40}] (* or *) CoefficientList[Series[ (1+4x)/(1-x)^6, {x, 0, 40}], x] (* Michael De Vlieger, Jul 14 2017 *)
LinearRecurrence[{6, -15, 20, -15, 6, -1}, {1, 10, 45, 140, 350, 756}, 40] (* Harvey P. Dale, Aug 04 2020 *)
PROG
(PARI) vector(40, n, n*binomial(n+3, 4)) \\ G. C. Greubel, Aug 28 2019
(Magma) [(n+1)*Binomial(n+4, 4): n in [0..40]]; // G. C. Greubel, Aug 28 2019
(Sage) [(n+1)*binomial(n+4, 4) for n in (0..40)] # G. C. Greubel, Aug 28 2019
(GAP) List([0..40], n-> (n+1)*Binomial(n+4, 4)); # G. C. Greubel, Aug 28 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Thi Ngoc Dinh (via R. K. Guy)
STATUS
approved