[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A027800
a(n) = (n+1)*binomial(n+4, 4).
9
1, 10, 45, 140, 350, 756, 1470, 2640, 4455, 7150, 11011, 16380, 23660, 33320, 45900, 62016, 82365, 107730, 138985, 177100, 223146, 278300, 343850, 421200, 511875, 617526, 739935, 881020, 1042840, 1227600, 1437656, 1675520, 1943865, 2245530, 2583525
OFFSET
0,2
COMMENTS
Number of 9-subsequences of [1, n] with just 4 contiguous pairs.
Kekulé numbers for certain benzenoids. - Emeric Deutsch, Jun 19 2005
Equals binomial transform of [1, 9, 26, 34, 21, 5, 0, 0, 0, ...]. - Gary W. Adamson, Jul 27 2008
a(n) equals the coefficient of x^4 of the characteristic polynomial of the (n+4) X (n+4) matrix with 2's along the main diagonal and 1's everywhere else (see Mathematica code below). - John M. Campbell, Jul 08 2011
Convolution of triangular numbers (A000217) and heptagonal numbers (A000566). - Bruno Berselli, Jun 27 2013
REFERENCES
Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
Herbert John Ryser, Combinatorial Mathematics, "The Carus Mathematical Monographs", No. 14, John Wiley and Sons, 1963, pp. 1-8.
S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p.233, # 9).
LINKS
Mina Aganagic, Albrecht Klemm and Cumrun Vafa, Disk Instantons, Mirror Symmetry and the Duality Web, arXiv:hep-th/0105045, 2001.
FORMULA
G.f.: (1+4*x)/(1-x)^6.
a(n) = (n+1)*A000332(n+4).
Sum_{n>=0} 1/a(n) = (2/3)*Pi^2 - 49/9. - Jaume Oliver Lafont, Jul 14 2017
E.g.f.: exp(x)*(24 + 216*x + 312*x^2 + 136*x^3 + 21*x^4 + x^5)/24. - Stefano Spezia, May 08 2021
Sum_{n>=0} (-1)^n/a(n) = Pi^2/3 - 80*log(2)/3 + 145/9. - Amiram Eldar, Jan 28 2022
EXAMPLE
By the fifth comment: A000217(1..6) and A000566(1..6) give the term a(6) = 1*21 + 7*15 + 18*10 + 34*6 + 55*3 + 81*1 = 756. - Bruno Berselli, Jun 27 2013
MAPLE
a:=n->(n+1)^2*(n+2)*(n+3)*(n+4)/24: seq(a(n), n=0..40); # Emeric Deutsch
MATHEMATICA
Table[Coefficient[CharacteristicPolynomial[Array[KroneckerDelta[#1, #2] + 1 &, {n+4, n+4}], x], x^4], {n, 0, 40}] (* John M. Campbell, Jul 08 2011 *)
Table[(n+1)Binomial[n+4, 4], {n, 0, 40}] (* or *) CoefficientList[Series[ (1+4x)/(1-x)^6, {x, 0, 40}], x] (* Michael De Vlieger, Jul 14 2017 *)
LinearRecurrence[{6, -15, 20, -15, 6, -1}, {1, 10, 45, 140, 350, 756}, 40] (* Harvey P. Dale, Aug 04 2020 *)
PROG
(PARI) vector(40, n, n*binomial(n+3, 4)) \\ G. C. Greubel, Aug 28 2019
(Magma) [(n+1)*Binomial(n+4, 4): n in [0..40]]; // G. C. Greubel, Aug 28 2019
(Sage) [(n+1)*binomial(n+4, 4) for n in (0..40)] # G. C. Greubel, Aug 28 2019
(GAP) List([0..40], n-> (n+1)*Binomial(n+4, 4)); # G. C. Greubel, Aug 28 2019
CROSSREFS
Partial sums of A002418.
Cf. A000332, A093562 ((5, 1) Pascal, column m=5).
Sequence in context: A179095 A213188 A037270 * A005714 A175705 A143671
KEYWORD
nonn,easy
AUTHOR
Thi Ngoc Dinh (via R. K. Guy)
STATUS
approved