[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A199012
The total number of edges in all unlabeled directed graphs (no self loops allowed) on n nodes.
1
0, 3, 48, 1308, 96080, 23114160, 18522702240, 50214057399744, 469006445678383872, 15356719437883766115840, 1788760016178073736115859200, 750205198434476437912637004278784, 1144188684031608529784893493874665232384, 6398724751986384956446081096594171272300830720
OFFSET
1,2
FORMULA
a(n) = A000273(n) * n(n-1)/2.
a(n) = Sum_{k=1..n*(n-1)} k*A052283(n,k). - Andrew Howroyd, Nov 05 2017
MAPLE
b:= proc(n, i, l) `if`(n=0 or i=1, 1/n!*2^((p-> add(p[j]-1+add(
igcd(p[k], p[j]), k=1..j-1)*2, j=1..nops(p)))([l[], 1$n])),
add(b(n-i*j, i-1, [l[], i$j])/j!/i^j, j=0..n/i))
end:
a:= n-> b(n$2, [])*n*(n-1)/2:
seq(a(n), n=1..16); # Alois P. Heinz, Sep 04 2019
MATHEMATICA
Table[D[GraphPolynomial[n, x, Directed], x]/.x->1, {n, 1, 15}]
(* Second program: *)
permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
edges[v_, t_] := Product[g = GCD[v[[i]], v[[j]]]; t[v[[i]]*v[[j]]/g]^(2*g), {i, 2, Length[v]}, {j, 1, i - 1}] * Product[ t[v[[i]]]^(v[[i]] - 1), {i, 1, Length[v]}]
a[n_] := (s = 0; Do[s += permcount[p]*(D[edges[p, 1 + x^# &], x] /. x -> 1), {p, IntegerPartitions[n]}]; s/n!);
Array[a, 15] (* Jean-François Alcover, Jul 08 2018, after Andrew Howroyd *)
PROG
(PARI)
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^(2*g))) * prod(i=1, #v, t(v[i])^(v[i]-1))}
a(n) = {my(s=0); forpart(p=n, s+=permcount(p)*subst(deriv(edges(p, i->1+x^i)), x, 1)); s/n!} \\ Andrew Howroyd, Nov 05 2017
(Python)
from itertools import combinations
from math import prod, factorial, gcd
from fractions import Fraction
from sympy.utilities.iterables import partitions
def A199012(n): return (n*(n-1)>>1)*int(sum(Fraction(1<<sum(p[r]*p[s]*gcd(r, s)<<1 for r, s in combinations(p.keys(), 2))+sum(r*(q*r-1) for q, r in p.items()), prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n))) # Chai Wah Wu, Jul 05 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Nov 01 2011
STATUS
approved