[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052283
Triangle read by rows: T(n,k) is the number of unlabeled directed graphs on n nodes with k arcs, k=0..n*(n-1).
9
1, 1, 1, 1, 1, 1, 1, 4, 4, 4, 1, 1, 1, 1, 5, 13, 27, 38, 48, 38, 27, 13, 5, 1, 1, 1, 1, 5, 16, 61, 154, 379, 707, 1155, 1490, 1670, 1490, 1155, 707, 379, 154, 61, 16, 5, 1, 1, 1, 1, 5, 17, 76, 288, 1043, 3242, 8951, 21209, 43863, 78814, 124115, 171024, 207362, 220922, 207362, 171024, 124115, 78814, 43863, 21209, 8951, 3242, 1043, 288, 76, 17, 5, 1, 1
OFFSET
0,8
COMMENTS
Triangular array read by rows T(n,k) is the number of unlabeled directed graphs (no self loops allowed) on n nodes with exactly k edges where n >= 1, 0 <= k <= n(n-1). - Geoffrey Critzer, Nov 01 2011
REFERENCES
F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 247.
J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 522.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..2680 (rows 0..20)
R. Absil and H Mélot, Digenes: genetic algorithms to discover conjectures about directed and undirected graphs, arXiv preprint arXiv:1304.7993 [cs.DM], 2013.
Philippe Ramirez and Stéphane Legendre, Revisiting asymmetric marriage rules, in Social Networks 52 (2017), pp. 261-269.
Eric Weisstein's World of Mathematics, Simple Directed Graph
FORMULA
T(n,0) = T(n,1) = T(n,n(n-1)-1) = T(n,n) = 1. - Geoffrey Critzer, Nov 01 2011
T(2k,k) = T(2k+1,k) = T(2k+2,k) =... and is the maximum value of column k. - Geoffrey Critzer, Nov 01 2011
EXAMPLE
[1],
[1],
[1,1,1],
[1,1,4,4,4,1,1],
[1,1,5,13,27,38,48,38,27,13,5,1,1];
(the last batch giving the numbers of directed graphs with 4 nodes and from 0 to 12 arcs).
MATHEMATICA
Table[CoefficientList[GraphPolynomial[n, x, Directed], x], {n, 1, 10}] (* Geoffrey Critzer, Nov 01 2011 *)
permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
edges[v_, t_] := Product[g = GCD[v[[i]], v[[j]]]; t[v[[i]]*v[[j]]/g]^(2 g), {i, 2, Length[v]}, {j, 1, i-1}] * Product[ t[v[[i]]]^(v[[i]] - 1), {i, 1, Length[v]}];
gp[n_] := (s = 0; Do[s += permcount[p]*edges[p, 1 + x^# &], {p, IntegerPartitions[n]}]; s/n!);
A052283 = Reap[For[n = 1, n <= 6, n++, p = gp[n]; For[k = 0, k <= Exponent[p, x], k++, Sow[Coefficient[p, x, k]]]]][[2, 1]] (* Jean-François Alcover, Jul 09 2018, after Andrew Howroyd *)
PROG
(PARI)
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^(2*g))) * prod(i=1, #v, t(v[i])^(v[i]-1))}
gp(n) = {my(s=0); forpart(p=n, s+=permcount(p)*edges(p, i->1+x^i)); s/n!}
for(n=1, 6, my(p=gp(n)); for(k=0, poldegree(p), print1(polcoeff(p, k), ", ")); print); \\ Andrew Howroyd, Nov 05 2017
CROSSREFS
Cf. A000273 (row sums), A070166, A008406, A003085, A283753 (weakly connected).
Sequence in context: A368820 A084452 A176101 * A133889 A243756 A172985
KEYWORD
nonn,tabf
AUTHOR
Vladeta Jovovic, Feb 07 2000
EXTENSIONS
a(0)=1 prepended and terms a(62) and beyond from Andrew Howroyd, Apr 20 2020
STATUS
approved