[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A183917
T(n,k) = number of nondecreasing arrangements of n numbers in -k..k with sum zero.
6
1, 1, 2, 1, 3, 2, 1, 4, 5, 3, 1, 5, 8, 8, 3, 1, 6, 13, 18, 12, 4, 1, 7, 18, 33, 32, 18, 4, 1, 8, 25, 55, 73, 58, 24, 5, 1, 9, 32, 86, 141, 151, 94, 33, 5, 1, 10, 41, 126, 252, 338, 289, 151, 43, 6, 1, 11, 50, 177, 414, 676, 734, 526, 227, 55, 6, 1, 12, 61, 241, 649, 1242, 1656, 1514
OFFSET
1,3
LINKS
David J. Hemmer and Karlee J. Westrem, Palindrome Partitions and the Calkin-Wilf Tree, arXiv:2402.02250 [math.CO], 2024. See Definition 5.1 p. 8.
EXAMPLE
Table starts
1 1 1 1 1 1 1 1 1 1 1 1 1
2 3 4 5 6 7 8 9 10 11 12 13 14
2 5 8 13 18 25 32 41 50 61 72 85 98
3 8 18 33 55 86 126 177 241 318 410 519 645
3 12 32 73 141 252 414 649 967 1394 1944 2649 3523
4 18 58 151 338 676 1242 2137 3486 5444 8196 11963 17002
4 24 94 289 734 1656 3370 6375 11322 19138 30982 48417 73316
5 33 151 526 1514 3788 8512 17575 33885 61731 107233 178870 288100
5 43 227 910 2934 8150 20094 45207 94257 184717 343363 610358 1043534
6 55 338 1514 5448 16660 44916 109583 246448 517971 1028172 1943488 3521260
Some solutions for n=5:
-2 -4 -4 -4 -4 -1 -4 -3 -4 -3 -1 -4 -3 -3 -2 -4
-2 0 0 -1 -2 0 -2 -2 -1 -3 -1 -4 0 -2 0 -3
0 0 0 0 -1 0 1 -1 1 0 0 1 0 1 0 -1
0 1 2 2 3 0 2 3 2 3 0 3 0 1 1 4
4 3 2 3 4 1 3 3 2 3 2 4 3 3 1 4
PROG
(Python)
from sympy.utilities.iterables import partitions
def A183917_T(n, k): return sum(1 for p in partitions(k*n, m=n, k=k<<1)) # Chai Wah Wu, Aug 27 2024
CROSSREFS
Column 2 is A001973.
Column 3 is A001977.
Column 4 is A001981.
Diagonal is A109655.
Row 3 is A000982(n+1).
Sequence in context: A341315 A293600 A191395 * A181971 A104741 A167237
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jan 07 2011
STATUS
approved